World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

STATISTICAL MODELING OF NEAR-BED PRESSURE GRADIENTS MEASURED ON A NATURAL BEACH

    https://doi.org/10.1142/S0578563409001965Cited by:10 (Source: Crossref)

    The wave-induced pressure gradient, ∂p/∂x, at the bottom is related to fluid acceleration and sediment movement in the surf zone. Following similar large-scale laboratory work by Suzuki et al. [2008a], this paper deals with the observations and analysis of bottom pressure gradients on a natural sandy beach. The cross-correlation coefficients between ∂p/∂x and the water surface elevation are high even in the surf zone, and the coefficients are higher than the coefficients between ∂p/∂x and the vertical velocity component or ∂p/∂x and du/dt. The observed nonlinear characteristics of ∂p/∂x are weaker than the laboratory experimental data but extreme values of ∂p/∂x are larger than the experiments. The distributions of exceedance probability of ∂p/∂x are evaluated using the two-parameter Weibull distribution. The modulus of the Weibull distribution is evaluated as a function of local significant wave height normalized by the offshore significant wave height. The exceedance probability distributions of ∂p/∂x show a broader distribution for the field data compared to the laboratory, but are, nevertheless, predicted reasonably well with the Weibull distribution.