World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Characterization of the porous nature of a phthalocyanine derivative with axial ligation designed to prevent aggregation

    https://doi.org/10.1142/S1088424610002173Cited by:0 (Source: Crossref)

    Judiciously designed phthalocyanines (Pcs), such as silicon-Pc bis(3,5-diphenyl)benzoate (1c), with axial substituents which prevent aggregation, can self-assemble to form ordered nanoporous films on electrode surfaces. In this paper, complementary techniques such as Scanning Kelvin Nanoprobe (SKN) microscopy, Atom Force Microscopy (AFM) and electrochemical measurements are used to demonstrate that films formed by silicon-Pc bis(3,5-diphenyl)benzoate allow size- and charge- selective transport of probe molecules through well-defined intermolecular cavities. In contrast, the analogs silicon-Pc bis(4-tert-butylbenzoate) (1a) and silicon-Pc bis(3-thienyl)acetate (1b) have different film morphologies when solvent-cast in the same manner and block the electrode surface. The role of the different axial substituents in orienting the molecules on the substrate is discussed.

    Most comprehensive & up-to-date research on PORPHYRINS
    Handbook of Porphyrin Science now available in 46 volumes