World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Macromolecular hexa-asymmetric zinc(II) phthalocyanines bearing triazole-modified triphenylene core: Synthesis, spectroscopy and analysis towards volatile organic compounds on Surface Acoustic Wave devices

    https://doi.org/10.1142/S1088424619500342Cited by:11 (Source: Crossref)

    The synthesis and characterization of novel asymmetric zinc(II) phthalocyanines (49) and their linking through peripheral and nonperipheral positions on the phthalocyanine ring via click coupling to alkyne-functionalized 2,3,6,7,10,11-hexakis(prop-2-ynyloxy)triphenylene core are described for the first time. These phthalocyanines (Pcs) (412) were characterized by elemental analysis and different spectroscopic techniques such as UV-vis, 1H-NMR, FT-IR and mass spectroscopy. Furthermore, the utilization of thin films of novel Pcs as a sensitive layer for detection of lung cancer from exhaled human breath at room temperature under exposure to marker volatile organic compounds (VOCs) are presented. The developed sensors were tested for acetone, ethanol, nn-hexane, toluene, chloroform and isoprene in a range of 300–14560 ppm. The obtained results have confirmed the possibility of utilization of Pc-based Surface Acoustic Wave (SAW) sensors for medical diagnosis based on exhaled breath analysis.

    This paper is part of the 2019 Women in Porphyrin Science special issue.

    Most comprehensive & up-to-date research on PORPHYRINS
    Handbook of Porphyrin Science now available in 46 volumes