World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A SEASONAL AUTO-REGRESSIVE MODEL BASED SUPPORT VECTOR REGRESSION PREDICTION METHOD FOR H5N1 AVIAN INFLUENZA ANIMAL EVENTS

    https://doi.org/10.1142/S1469026811003069Cited by:3 (Source: Crossref)

    The time series prediction of avian influenza epidemics is a complex issue, because avian influenza has latent seasonality which is difficult to identify. Although researchers have applied a neural network (NN) model and the Box-Jenkins model for the seasonal epidemic series research area, the results are limited. In this study, we develop a new prediction seasonal auto-regressive-based support vector regression (SAR-SVR) model which combines the seasonal auto-regressive (SAR) model with a support vector regression (SVR) model to address this prediction problem to overcome existing limitations. Fast Fourier transformation is also merged into this method to identify the latent seasonality inside the time series. The experiments demonstrate that the developed SAR-SVR method out-performs SVR, Box-Jenkins models and two layer feed forward NN model-both in accuracy and stability in the avian influenza epidemic disease time series prediction.

    Remember to check out the Most Cited Articles!

    Check out these titles in artificial intelligence!