World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

HIERARCHICAL STRUCTURE BASED CONVOLUTIONAL NEURAL NETWORK FOR FACE RECOGNITION

    https://doi.org/10.1142/S1469026813500181Cited by:17 (Source: Crossref)

    In this paper, a hierarchical structure based convolutional neural network is proposed to provide the ability for robust information processing. The weight sharing ability of convolutional neural networks (CNNs) is considered as a level of hierarchy in these networks. Weight sharing reduces the number of free parameters and improves the generalization ability. In the proposed structure, a small CNN which is used for feature extractor is shared between the whole input image pixels. A scalable architecture for implementing extensive CNNs is resulted using a smaller and modularized trainable network to solve a large and complicated task. The proposed structure causes less training time, fewer numbers of parameters and higher test data accuracy. The recognition accuracy for recognizing unseen data shows improvement in generalization. Also presented are application examples for face recognition. The comprehensive experiments completed on ORL, Yale and JAFFE face databases show improved classification rates and reduced training time and network parameters.

    Remember to check out the Most Cited Articles!

    Check out these titles in artificial intelligence!