World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Convolutional Neural Networks with Fused Layers Applied to Face Recognition

    https://doi.org/10.1142/S1469026815500145Cited by:10 (Source: Crossref)

    In this paper, we propose an effective convolutional neural network (CNN) model to the problem of face recognition. The proposed CNN architecture applies fused convolution/subsampling layers that result in a simpler model with fewer network parameters; that is, a smaller number of neurons, trainable parameters, and connections. In addition, it does not require any complex or costly image preprocessing steps that are typical in existing face recognizer systems. In this work, we enhance the stochastic diagonal Levenberg–Marquardt algorithm, a second-order back-propagation algorithm to obtain faster network convergence and better generalization ability. Experimental work completed on the ORL database shows that a recognition accuracy of 100% is achieved, with the network converging within 15 epochs. The average processing time of the proposed CNN face recognition solution, executed on a 2.5 GHz Intel i5 quad-core processor, is 3 s per epoch, with a recognition speed of less than 0.003 s. These results show that the proposed CNN model is a computationally efficient architecture that exhibits faster processing and learning times, and also produces higher recognition accuracy, outperforming other existing work on face recognizers based on neural networks.

    Remember to check out the Most Cited Articles!

    Check out these titles in artificial intelligence!