World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

In-Plane Vibration Analysis of Rotating Tapered Timoshenko Beams

    https://doi.org/10.1142/S1758825116500642Cited by:15 (Source: Crossref)

    Modal analysis of rotating tapered cantilevered Timoshenko beams undergoing in-plane vibration is investigated. The coupling effect of axial motion and transverse motion is considered. The Kane dynamic method is applied to deriving the governing eigenvalue equations. The displacement and rotational angle components are approximately described by the products of Chebyshev polynomials and corresponding boundary functions. Chebyshev polynomials guarantee the numerical robustness while the boundary functions guarantee the satisfaction of the geometric boundary conditions. The excellent convergence of the present solution is exhibited. The results are compared with those available in literature, good agreement is observed. The parametric studies on modal characteristics are presented in detail. The tuned rotational speed is examined and the eigenvalue loci veering phenomenon along with the corresponding mode shapes is investigated.