World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Nonlinear Free Vibration Analysis of In-plane Bi-directional Functionally Graded Plate with Porosities Resting on Elastic Foundations

    https://doi.org/10.1142/S1758825121501313Cited by:37 (Source: Crossref)

    This paper deals with the nonlinear free vibration analysis of in-plane bi-directional functionally graded (IBFG) rectangular plate with porosities which are resting on Winkler–Pasternak elastic foundations. The material properties of the IBFG plate are assumed to be graded along the length and width of the plate according to the power-law distribution, as well as, even and uneven types are taken into account for porosity distributions. Equations of motion are developed by means of Hamilton’s principle and von Karman nonlinearity strain–displacement relations based on classical plate theory (CPT). Afterward, the time-dependent nonlinear equations are derived by applying the Galerkin procedure. The nonlinear frequency is determined by using modified Poincare–Lindstedt method (MPLM). Numerical results are obtained in tabular and graphical form to examine the effects of some system key parameters such as porosity coefficients, distribution patterns, gradient indices, elastic foundation coefficients, aspect ratio and vibration amplitude on the nonlinear frequency of the porous IBFG plate. To validate the analysis, the results of this paper have been compared to the published data and good agreements have been found.