World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

ADVANCES IN F0F1-ATP SYNTHASE BIOLOGICAL PROTEIN NANOMOTOR: FROM MECHANISMS AND STRATEGIES TO POTENTIAL APPLICATIONS

    https://doi.org/10.1142/S1793292009001587Cited by:9 (Source: Crossref)

    Movement and shape changes are fundamental aspects of all living organisms. This biological motility results from the biological nanomotors, in particular protein nanomotors. Cells contain a variety of protein nanomotors that rotate (e.g., F0F1-ATP synthase or bacterial flagellar motors) or move in a linear fashion (e.g., the kinesin, myosin and dynein motors). F0F1-ATP synthase is one of the ideal nanomotors or energy providing systems for micro/nanomachines because of its small size, smart and perfect structure, and ultra-high energy transfer efficiency. Therefore, in this paper, we have reviewed the structure, mechanism, and potential applications of the F0F1-ATP synthase nanomotor. In all organisms, the F0F1-ATP synthase consists of two distinct nanomotors, F0 and F1. The F0 moiety is embedded in the membrane and is a detergent soluble unit while the F1 moiety protrudes from the membrane and is a water soluble unit. F0F1-ATP synthase operates as two stepper motor/generators coupled by a common shaft and an electrochemical-to-mechanical-to-chemical energy transducer with an astounding 360° rotary motion of subunits. F0F1-ATP synthase nanomotor may enable the creation of a new class of sensors, mechanical force transducers, actuators, and nanomechanical devices. Thus, the F0F1-ATP synthase nanomotor field has expanded into a wide variety of science.