World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Brief ReportsNo Access

Electrochemical Immunosensor for Carcinoembryonic Antigen Detection Based on Mo–Mn3O4/MWCNTs/Chits Nanocomposite Modified ITO Electrode

    https://doi.org/10.1142/S1793292015501118Cited by:17 (Source: Crossref)

    A novel electrochemical immunosensor for determination of carcinoembryonic antigen (CEA) in human serum was fabricated by depositing Mo–Mn3O4/MWCNTs/Chits nanocomposite onto an indium-tin oxide (ITO) electrode. Mo-doped Mn3O4 (MMO) was synthesized by sol–gel method and the presence of molybdenum improved its electrochemical properties. The MMO/MWCNTs/Chits nanocomposite could accelerate the electron transfer rate and enlarge the surface area to capture a large number of Carcinoembryonic Antigen (CEA). The factors influencing the performance of the immunosensor were investigated, such as incubation time, incubation temperature and pH. Under optimal conditions, the electrochemical immunosensor could detect CEA in a linear range from 0.1ngmL11 to 125ngmL11 with a detection limit of 4.9pgmL11 (SN=SN=33). In addition, it exhibited high sensitivity and acceptable stability on a promising immobilization platform for signal amplification, which could be extended to other labeled recognition systems. This electrochemical immunosensor may provide potential applications for the clinical diagnosis.