World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
BRIEF REPORTSNo Access

Comparison of Fast Response and Recovery Pd Nanoparticles and Ni Thin Film Hydrogen Gas Sensors Based on Metal-Oxide-Semiconductor Structure

    https://doi.org/10.1142/S1793292017500965Cited by:23 (Source: Crossref)

    In this study, two hydrogen sensors with Pd/SiO2/Si and Ni/SiO2/Si structures have been fabricated. Palladium nanoparticles are synthesized and then deposited on the oxide surface using spin coating. Capacitance–voltage curves for the Pd/SiO2/Si sensor at room temperature and for the Ni/SiO2/Si sensor at 140C in pure nitrogen and 1% H2–N2 mixture are described. The time required for reaching 90% of the steady-state signal magnitude (t90%) for Pd/SiO2/Si capacitor was 1.4s and for Ni/SiO2/Si capacitor was 90 s. The time interval for recovery from 90% to 10% of steady-state signal magnitude (t10%) for Pd/SiO2/Si capacitor was 14s and for Ni/SiO2/Si capacitor was 40min. For the Pd/SiO2/Si capacitor, the response is 88% and for Ni/SiO2/Si capacitor the response is 29%. Comparison of Pd nanoparticles capacitive- and resistance-based sensors shows that the metal-oxide-semiconductor capacitive is faster and more sensitive than the resistance-based hydrogen gas sensors.