Enhanced Performance of Near-Infrared-Absorption CdSeTe Quantum Dot-Sensitized Solar Cells Via Octa-Aminopropyl Polyhedral Oligomeric Silsesquioxane Modification
Abstract
The charge recombination caused by surface defects limits photovoltaic properties of quantum dot-sensitized solar cells (QDSSCs), which can be suppressed by modifying organic or inorganic molecules and atomic ligands. In this paper, octa-aminopropyl polyhedral oligomeric silsesquioxane (OA-POSS) connected and modified near-infrared absorption CdSeTe quantum dots (QDs) through coupling agent (1-ethyl-3-3-dimethylaminopropyl carbodiimide hydrochloride). The results suggest that OA-POSS reduces the surface defects of CdSeTe QDs and suppresses charge recombination. Therefore, the power conversion efficiency improves nearly 41%, which increases from 2.00% to 2.82%.
