Please login to be able to save your searches and receive alerts for new content matching your search criteria.
The charge recombination caused by surface defects limits photovoltaic properties of quantum dot-sensitized solar cells (QDSSCs), which can be suppressed by modifying organic or inorganic molecules and atomic ligands. In this paper, octa-aminopropyl polyhedral oligomeric silsesquioxane (OA-POSS) connected and modified near-infrared absorption CdSeTe quantum dots (QDs) through coupling agent (1-ethyl-3-3-dimethylaminopropyl carbodiimide hydrochloride). The results suggest that OA-POSS reduces the surface defects of CdSeTe QDs and suppresses charge recombination. Therefore, the power conversion efficiency improves nearly 41%, which increases from 2.00% to 2.82%.