World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Adsorption, Kinetic and Regeneration Studies of n-Hexane on MIL-101(Cr)/AC

    https://doi.org/10.1142/S1793292019501005Cited by:12 (Source: Crossref)

    MIL-101(Cr)/AC was synthesized by in situ incorporation of activated carbon powder via hydrothermal method. The water stability, n-hexane adsorption and regeneration of the MIL-101(Cr)/AC were experimentally measured. The results showed that the MIL-101(Cr)/AC exhibited the larger surface area (3319.3m2/g) than that of MIL-101(Cr) and AC, respectively. The addition of activated carbon was beneficial to improve the yield of MIL-101(Cr)/AC. The pore structure parameter and XRD of the MIL-101(Cr)/AC changed little after in water for 24h. Furthermore, the adsorption capacity of MIL-101(Cr)/AC for n-hexane was 786mg/g, which increased to 23.0% and 27.7% compared with MIL-101(Cr) and AC, respectively. Kinetic fitting of data indicated that the pseudo-first order model can more accurately describe the adsorption process of n-hexane on MIL-101(Cr)/AC and the intraparticle diffusion was not the sole rate-controlling step. Besides, the regeneration efficiency of MIL-101(Cr)/AC was over 92% after 10 consecutive n-hexane adsorption/desorption cycles.