Investigation of Optical and Magnetic Properties of Nanostructured CdS- and Cr-Doped CdS Nanorods Dilute Magnetic Semiconductor
Abstract
Two novel CdS- and Cr-doped CdS nanostructures, including nanoparticles and nanoparticles, were successfully synthesized by solvothermal reaction with hydrazine hydrate (HHA), ethylene glycol (EG), ethylenediamine (EN) and ethanolamine (EA) as mixed solvents in different sulfur and cadmium sources. The structure, morphology and properties of the products were characterized using X-ray powder diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive spectrometer (EDS) and Vibrating sample magnetometer (VSM), respectively. The morphology of the Cr-doped CdS nanostructures was nanorod, with an average diameter of 70–90nm and lengths of 1–2.5μm. The product was observed to be composed of S, Cd and Cr by EDS. The VSM tests demonstrated that the Cr-doped CdS nanorods had super strong ferromagnetism at room temperature, while pure CdS nanorods were weak ferromagnetism. The results confirmed that the prepared the Cr-doped CdS nanorods had ferromagnetism at room temperature, and the saturation magnetization Ms was approximately 9.125 (10−3emu/g), the coercivity of Hc was approximately 139.22Oe.
