World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Accurate Lane Detection for Self-Driving Cars: An Approach Based on Color Filter Adjustment and K-Means Clustering Filter

    https://doi.org/10.1142/S1793351X20500038Cited by:6 (Source: Crossref)

    Lane detection is a crucial factor for self-driving cars to achieve a fully autonomous mode. Due to its importance, lane detection has drawn wide attention in recent years for autonomous driving. One challenge for accurate lane detection is to deal with noise appearing in the input image, such as object shadows, brake marks, breaking lane lines. To address this challenge, we propose an effective road detection algorithm. We leverage the strength of color filters to find a rough localization of the lane marks and employ a K-means clustering filter to screen out the embedded noises. We use an extensive experiment to verify the effectiveness of our method. The result indicates that our approach is robust to process noises appearing in input image, which improves the accuracy in lane detection.