World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

The Role of Modulation Function in Nonstationary Stochastic Earthquake Model

    https://doi.org/10.1142/S1793431114500158Cited by:15 (Source: Crossref)

    In structural engineering earthquakes are often represented as random phenomena. Frequently, filtered white noise stochastic processes are adopted to properly model their frequency content. In order to model the time variation of earthquake intensity, these processes are assumed nonstationary, and time modulation functions (MFs) are used. For these, different shapes and formulas have been proposed in literature till now, but only few works have dealt with their comparison in terms of structural response. This paper focuses on this topic: at this aim, a simple linear single degree of freedom (SDoF) system, which represents a structure vibrating in its fundamental mode, is considered subject to a time modulated filtered stochastic process. Different shapes of the MF are considered and the influence on two structural response indices, i.e. the maximum displacement standard deviation and the failure probability, is investigated. A sensitivity analysis is finally performed by varying peak ground acceleration (PGA), Arias intensity and structural period.