World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Special Issue on 7th South China Sea Tsunami Workshop Singapore on 17–22 November 2014 (SCSTW 7); Guest Editor: Tso-Ren Wu, National Central University, TaiwanNo Access

Experimental Study of Reduction of Solitary Wave Run-Up by Emergent Rigid Vegetation on a Beach

    https://doi.org/10.1142/S1793431115400035Cited by:24 (Source: Crossref)

    Extensive studies have been carried out to study the performance of mangrove forests in wave height reduction. In this study, the reduction of the inundation and run-up of leading tsunami waves by mangrove forests was investigated through a series of laboratory experiments conducted in a long wave tank. The inundation and run-up were measured using a high speed CCD camera. Solitary waves were used to model the leading tsunami waves. Five vegetation models representing three forest densities and two tree distributions were examined on an impermeable sloping beach, and they were compared with the non-vegetated slope in view of wave reflection, transmission, and run-up. Results show that both incident wave height and run-up could be reduced by up to 50% when the vegetation was present on the slope. Dense vegetation reduced the wave transmission because of the increased wave reflection and energy dissipation into turbulence in vegetation. Normalized wave run-up on the beach decreased with the increase of both normalized incident wave height and forest density. Effect of forest density on the wave run-up on the sloping beach was further examined, and an empirical formula with the density incorporated was proposed. The study also highlighted the importance of tree distribution to wave interaction with vegetation on the slope when the forest density was unaltered, and run-up reduction difference between tandem and staggered arrangements of the trees could reach up to 20%.