World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Dynamics analysis of fractional-order Hopfield neural networks

    https://doi.org/10.1142/S1793524520500837Cited by:44 (Source: Crossref)

    This paper proposes fractional-order systems for Hopfield Neural Network (HNN). The so-called Predictor–Corrector Adams–Bashforth–Moulton Method (PCABMM) has been implemented for solving such systems. Graphical comparisons between the PCABMM and the Runge–Kutta Method (RKM) solutions for the classical HNN reveal that the proposed technique is one of the powerful tools for handling these systems. To determine all Lyapunov exponents for them, the Benettin–Wolf algorithm has been involved in the PCABMM. Based on such algorithm, the Lyapunov exponents as a function of a given parameter and as another function of the fractional-order have been described, the intermittent chaos for these systems has been explored. A new result related to the Mittag–Leffler stability of some nonlinear Fractional-order Hopfield Neural Network (FoHNN) systems has been shown. Besides, the description and the dynamic analysis of those phenomena have been discussed and verified theoretically and numerically via illustrating the phase portraits and the Lyapunov exponents’ diagrams.

    References

    • 1. S. Zhang, Y. Yu and H. Wang, Mittag–Leffler stability of fractional-order Hopfield neural networks, Nonlinear Analysis: Hybrid Syst. 16 (2014) 104–121. Web of ScienceGoogle Scholar
    • 2. S. Hayman, The mcculloch-pitts model, International Joint Conference on Neural Networks (IJCNN’99), Vol. 6 (IEEE, 1999), pp. 4438–4439. Google Scholar
    • 3. J. Hopfield, Neural networks and physical systems with emergent collective computational abilities, Proc. Natl. Acad. Sci. 79(8) (1982) 2554–2558. Web of ScienceGoogle Scholar
    • 4. H. Huang, Q. Du and X. Kang, Global exponential stability of neutral high-order stochastic Hopfield neural networks with Markovian jump parameters and mixed time delays, ISA Trans. 52(6) (2013) 759–767. Web of ScienceGoogle Scholar
    • 5. H.-P. Hu, J.-K. Wang and F.-L. Xie, Dynamics analysis of a new fractional-order Hopfield neural network with delay and its generalized projective synchronization, Entropy 21(1) (2019) 1. Web of ScienceGoogle Scholar
    • 6. J. Hopfield, Neurons with graded response have collective computational properties like those of two-state neurons, Proc. Natl. Acad. Sci. USA 81 (1984) 3088–3092. Web of ScienceGoogle Scholar
    • 7. H. Wang, Y. Yu, G. Wen, S. Zhang and J. Yu, Global stability analysis of fractional-order Hopfield neural networks with time delay, Neurocomputing 154 (2015) 15–23. Web of ScienceGoogle Scholar
    • 8. E. Kaslik and S. Sivasundaram, Nonlinear dynamics and chaos in fractional-order neural networks, Neural Network 32 (2012) 245–256. Web of ScienceGoogle Scholar
    • 9. J. L. Mata-Machuca and R. Aguilar-Lopez, Adaptative synchronization in multi-output fractional-order complex dynamical networks and secure communications, Eur. Phys. J. Plus 133(14) (2018) 14. Web of ScienceGoogle Scholar
    • 10. E. Tlelo-Cuautle, D. L. F. L. Gerardo, V. T. Pham, C. Volos, S. Jafari and A. D. J. Quintas-Valles, Dynamics, FPGA realization and application of a chaotic system with an infinite number of equilibrium points, Nonlinear Dyn. 89 (2017) 1129–1139. Web of ScienceGoogle Scholar
    • 11. C. H. Yang, Z. M. Ge, C. M. Chang and S. Y. Li, Chaos synchronization and chaos control of quantum-CNN chaotic system by variable structure control and impulse control, Nonlinear Anal. Real World Appl. 11 (2010) 977–1985. Web of ScienceGoogle Scholar
    • 12. L. P. Chen, Y. Chai and R. C. Wu, Linear matrix inequality criteria for robust synchronization of uncertain fractional-order chaotic systems, Chaos 21 (2011) 043107. Web of ScienceGoogle Scholar
    • 13. J. P. Singh and B. K. Roy, Second order adaptive time varying sliding mode control for synchronization of hidden chaotic orbits in a new uncertain 4-D conservative chaotic system, Trans. Inst. Meas. Control 40 (2018) 3573–3586. Web of ScienceGoogle Scholar
    • 14. J. M. Munoz-Pacheco, E. Zambrano-Serrano, C. Volos, S. Jafari, J. Kengne and K. Rajagopal, A new fractional-order chaotic system with different families of hidden and self-excited attractors, Entropy 20 (2018) 564. Web of ScienceGoogle Scholar
    • 15. B. Kagstrom, A perturbation analysis of the generalized Sylvester equation, Siam J. Matrix Anal. Appl. 15(4) (1994) 1045–1060. Web of ScienceGoogle Scholar
    • 16. M. Caputo, Linear models of dissipation whose Q is almost frequency independent: part II, Geophys. J. Int. 13 (1967) 529–539. Web of ScienceGoogle Scholar
    • 17. R. B. Albadarneh, I. M. Batiha and M. Zurigat, Numerical solutions for linear fractional differential equations of order 1 < α < 2 using finite difference method (FFDM), J. Math. Computer Sci. 16(1) (2016) 103–111. Web of ScienceGoogle Scholar
    • 18. I. Podlubny, Fractional Differential Equations (Academic Press, San Diego, USA, 1999). Google Scholar
    • 19. I. M. Batiha, R. El-Khazali, A. AlSaedi and S. Momani, The general solution of singular fractional-order linear time-invariant continuous systems with regular pencils, Entropy Dyn. Syst. 20(6) (2018) 400. Google Scholar
    • 20. R. B. Albadarneh, M. Zerqat and I. M. Batiha, Numerical solutions for linear and non-linear fractional differential equations, Int. J. Pure Appl. Math. 106(3) (2016) 859–871. Google Scholar
    • 21. K. Sun, Chaotic Secure Communication (Tsinghua University Press and Walter de Gruyter GmbH, Germany, 2016). Google Scholar
    • 22. D. Kai, An algorithm for the numerical solution of differential equations of fractional order, Electron. Trans. Numer. Anal. 5 (1998) 1–6. Google Scholar
    • 23. D. Kai, N. J. Ford and A. D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dyn. 29 (2002) 3–22. Web of ScienceGoogle Scholar
    • 24. D. Kai and N. J. Ford, Analysis of fractional differential equations, J. Math. Anal. Appl. 265(2) (2002) 229–48. Web of ScienceGoogle Scholar
    • 25. M. Danca and N. Kuznetsov, Matlab code for Lyapunov exponents of fractional order systems, Int. J. Bifurc. Chaos 28(5) (2018) 1850067. Link, Web of ScienceGoogle Scholar
    • 26. M. Tavazoei and M. Haeri, A proof for non existence of periodic solutions in time invariant fractional order systems, Automatica 45 (2009) 1886–1890. Web of ScienceGoogle Scholar
    • 27. M.-F. Danca, M. Fečkan, N. Kuznetsov and G. Chen, Complex dynamics, hidden attractors and continuous approximation of a fractional-order hyperchaotic PWC system, Nonlinear Dyn. 91 (2018) 2523–2540. Web of ScienceGoogle Scholar
    • 28. K. Diethelm and N. Ford, Analysis of fractional differential equations, J. Math. Anal. Appl. 265 (2002) 229–248. Web of ScienceGoogle Scholar
    • 29. C. Li, Z. Gong, D. Qian and Y. Chen, On the bound of the Lyapunov exponents for the fractional differential systems, Chaos 20 (2010) 013127. Web of ScienceGoogle Scholar
    • 30. Z. Momani, M. Al Shridah, O. A. Arqub, M. Al-Momani and S. Momani, Modeling and analyzing neural networks using reproducing Kernel Hilbert space algorithm, Appl. Math. Inf. Sci. 12(1) (2018) 89–99. Google Scholar
    • 31. C. F. Barenghi, Introduction to Chaos: Theoretical and Numerical Methods (Create Space Independent Publishing Platform, California, 2014). Google Scholar
    • 32. R. Agarwal, D. O’Regan, S. Hristova and M. Cicek, Practical stability with respect to initial time difference for Caputo fractional differential equations, Commun. Nonlinear Sci. Numer. Simul. 42 (2017) 106–120. Web of ScienceGoogle Scholar
    • 33. Y. Li, Y. Chen and I. Podlubny, Mittag–Leffler stability of fractional order nonlinear dynamic systems, Automatica 45(8) (2009) 1965–1969. Web of ScienceGoogle Scholar
    • 34. R. Agarwal, S. Hristova and D. O’Regan, Applications of lyapunov functions to caputo fractional differential equations, Mathematics 6(11) (2018) 229. Web of ScienceGoogle Scholar
    • 35. B. Lundstrom, M. Higgs and W. Spain, Fractional differentiation by neocortical pyramidal neurons, Nature Neurosci. 11(11) (2008) 1335–1342. Web of ScienceGoogle Scholar
    • 36. R. Wu, X. Hei and L. Chen, Finite-time stability of fractional-order neural networks with delay, Commun. Theor. Phys. (Beijing) 60 (2013) 189–193. Web of ScienceGoogle Scholar
    • 37. J. Yu, C. Hu and H. Jiang, α-stability and α-synchronization for fractional-order neural networks, Neural Netw. 5 (2012) 82–87. Web of ScienceGoogle Scholar
    • 38. Y. Li, Y. Chen and I. Podlubny, Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag–Leffler stability, Comput. Math. Appl. 59(5) (2010) 1810–1821. Web of ScienceGoogle Scholar
    • 39. C. Liu, Y. He and B. Zhang, Design of BLDCM emulator for transmission control units, AIP Conf. Proc. 1955 (2018) 040067. Google Scholar
    • 40. A. Coronel-Escamilla, J. F. Gómez-Aguilar, D. Baleanu, T. Córdova-Fraga, R. F. Escobar-Jiménez, V. H. Olivares-Peregrino and M. M. Al Qurashi, Bateman–Feshbach Tikochinsky and Caldirola–Kanai Oscillators with new fractional differentiation, Entropy 19 (2017) 55. Web of ScienceGoogle Scholar

    Remember to check out the Most Cited Articles in IJB!
    Check out new Biomathematics books in our Mathematics 2018 catalogue!
    Featuring author Frederic Y M Wan and more!