World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Numerical investigation of fractional model of phytoplankton–toxic phytoplankton–zooplankton system with convergence analysis

    https://doi.org/10.1142/S1793524522500061Cited by:21 (Source: Crossref)

    In this paper, a fractional order model of the phytoplankton–toxic phytoplankton–zooplankton system with Caputo fractional derivative is investigated via three computational methods, namely, residual power series method (RPSM), homotopy perturbation Sumudu transform method (HPSTM) and the homotopy analysis Sumudu transform method (HASTM). This model is constituted by three components: phytoplankton, toxic phytoplankton and zooplankton. Phytoplankton species are self-feeding members of the plankton community and play a very significant role in ecosystems. A wide range of sea creatures get food through phytoplankton. This paper focuses on the implementation of the three above-mentioned computational methods for a nonlinear time-fractional phytoplankton–toxic phytoplankton–zooplankton (PTPZ) model with a perception to study the dynamics of a model. This study shows that the solutions obtained by employing the suggested computational methods are in good agreement with each other. The computational procedures reveal that the HASTM solution generates a more general solution as compared to RPSM and HPSTM and incorporates their results as a special case. The numerical results presented in the form of graphs authenticate the accuracy of computational schemes. Hence, the implemented methods are very appropriate and relevant to handle nonlinear fractional models. In addition, the effect of variation of fractional order of a time derivative and time t on populations of phytoplankton, toxic–phytoplankton and zooplankton has also been studied through graphical presentations. Moreover, the uniqueness and convergence analyses of HASTM solution have also been discussed in view of the Banach fixed-point theory.


    Remember to check out the Most Cited Articles in IJB!
    Check out new Biomathematics books in our Mathematics 2018 catalogue!
    Featuring author Frederic Y M Wan and more!