RANDOM COMPLEXES AND ℓ2-BETTI NUMBERS
Abstract
Uniform spanning trees on finite graphs and their analogues on infinite graphs are a well-studied area. On a Cayley graph of a group, we show that they are related to the first ℓ2-Betti number of the group. Our main aim, however, is to present the basic elements of a higher-dimensional analogue on finite and infinite CW-complexes, which relate to the higher ℓ2-Betti numbers. One consequence is a uniform isoperimetric inequality extending work of Lyons, Pichot, and Vassout. We also present an enumeration similar to recent work of Duval, Klivans and Martin.