Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Uniform spanning trees on finite graphs and their analogues on infinite graphs are a well-studied area. On a Cayley graph of a group, we show that they are related to the first ℓ2-Betti number of the group. Our main aim, however, is to present the basic elements of a higher-dimensional analogue on finite and infinite CW-complexes, which relate to the higher ℓ2-Betti numbers. One consequence is a uniform isoperimetric inequality extending work of Lyons, Pichot, and Vassout. We also present an enumeration similar to recent work of Duval, Klivans and Martin.