System Upgrade on Tue, May 28th, 2024 at 2am (EDT)
Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours. For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
No Access
The Future of Industrial Accelerators and Applications
This section updates Volume 4 of the Reviews of Accelerator Science and Technology titled “Accelerator Applications in Industry and the Environment,” published in 2011 [A. W. Chao and W. Chou (eds.), Reviews of Accelerator Science and Technology, Accelerator Applications in Industry and the Environment, Vol. 4 (World Scientific, 2011)]. We also include the new material available about this field following the publication of “The Beam Business: Accelerators in Industry” in 2011 [R. W. Hamm and M. E. Hamm, Physics Today 46–51 (June 2011)] and “Industrial Accelerators and Their Applications” in 2012 [R. W. Hamm and M. E. Hamm, Industrial Accelerators and Their Applications (World Scientific, 2012)], both written and co-edited by one of us (RWH). We start with some general trends in industrial accelerator developments and applications and then move on to bringing the up-to-date developments in each article of Volume 4. In this regard, we owe a debt of gratitude to many of the authors of sections of RAST-4, and they are gratefully acknowledged in each of their individual update submissions.
1. A. W. Chao and W. Chou (eds.), Reviews of Accelerator Science and Technology, Accelerator Applications in Industry and the Environment, Vol. 4 (World Scientific, 2011). Link, Google Scholar
3. R. W. Hamm and M. E. Hamm, Industrial Accelerators and Their Applications (World Scientific, 2012). Link, Google Scholar
4. W. Henning and C. Shank, Acclerators for America’s future (2010), www.acceleratorsamerica.org/files/Report.pdf. Google Scholar
5. R. W. Hamm, Industrial accelerators, Rev. Accel. Sci. Technol.1, 163–184 (2008). Link, Google Scholar
6. A. P. Chernyaev and S. M. Varzar, Particle accelerators in modern world, Phys. Atom. Nucl.77(10), 1203–1215 (2014). Crossref, Google Scholar
7. R. W. Hamm and M. Current, Private communication. Google Scholar
8. W. Röntgen, Ueber eine neue Art von Strahlen. Vorläufige Mitteilung, Aus den Sitzungsberichten der Würzburger Physik.-medic. Gesellschaft Würzburg, 137–147 (1895). Google Scholar
9. W. Crookes, On the illumination of lines of molecular pressure, and the trajectory of molecules, Phil. Trans.170, 135–164. Google Scholar
10. J. F. Ziegler, J. P. Biersack and U. Littmark, The Stopping and Range of Ions in Matter, Vol. 1 (Pergamon, New York, 1985). Crossref, Google Scholar
16. G. E. Moore, Cramming more components onto integrated circuits, Electronics38(8), (1965). Google Scholar
17. R. H. Dennard, F. H. Gaensslen, H.-N. Yu, L. Rideour, E. Bassous and A. R. LeBlanc, Design of ion-implanted MOSFETs with very small physical dimensions, IEEE J. Solid-State CircuitsSC-9, 595–606 (606). Google Scholar
18. B. Davari, R. H. Dennard and G. G. Shahidi, CMOS scaling for high performance and low power-the next ten years, Proc. IEEE83(3), 595–606 (1995). Crossref, Google Scholar
19. M. I. Current, Ion implantation of advanced Silicon devices: Past, present and future, Mater. Sci. Semiconductor Process.62, 13–22 (22). Crossref, Google Scholar
21. L. A. Larson, J. M. Williams and M. I. Current, Ion implantation for semiconductor doping and materials modification, Rev. Accel. Sci. Technol.4, 11–40 (40). Link, Google Scholar
22. M. I. Current, Ion implantation for fabrication of semiconductor devices and materials, in Industrial Accelerators and Their Applications, eds. R. W. Hamm and M. E. Hamm (World Scientific, 2012), pp. 9–56. Link, Google Scholar
23. Y. Tauer, C. H. Wann and D. J. Frank, 25nm CMOS design considerations, IEEE IEDM-1998, 789–792 (1998). Google Scholar
24. M. I. Current, New applications for ion implantation: Life in a vertical CMOS world, materials modification, PV cell doping, deep proton implants, in Ion Implantation Applications, Science and Technology-2014, ed. J. F. Ziegler (Ion Implantation Tech, 2014). Google Scholar
25. D. James, Siliconics, private communication. Google Scholar
26. L. C. Pipes, J. McGill and A. Jahagirdar, NMOS source-drain extension ion implantation into heated substrates, Ion Implantation Technology-2014 (2014). Crossref, Google Scholar
27. S. Kyogoku, J.-I. Iwata and A. Oshiyama, Relation between nanomorphology and energy bands of Si nanowires, Phys. Rev. B87, 165418 (2013). Crossref, Google Scholar
28. M. I. Current, Perspectives in low-energy ion (and neutral) implantation, in Proc. Int. Workshop on Junction Technology-2017, Uji, Japan (2017). Crossref, Google Scholar
29. T.-C. Kuo, T.-L. Shih, Y.-H. Su, W.-H. Lee, M. I. Current and S. Samukawa, Neutral beam and ICP etching of HKMG MOS capacitors: Observations and plasma-induced damage model, J. Appl. Phys.123, 161517 (2018). Crossref, Google Scholar
30. T. Shinada, S. Okamoto, T. Kobayashi and I. Ohdomari, Enhancing semiconductor device performance using ordered dopant arrays, Nature437, 1128–1131 (1131). Crossref, Google Scholar
31. M. Fuechsle, J. A. Miwa, S. Mahapatra, H. Ray, S. Lee, O. Warschkow, L. C. L. Hollenberg, G. Klimeck and M. Y. Simmons, A single atom transistor, Nature Nanotechnol. 1–5 (2012). Google Scholar
32. D. N. Jamison, W. L. L. Lawrie, S. G. Robinson, A. M. Jakob, B. C. Johnson and J. C. McCallum, Deterministic doping, Mater. Sci. Semiconductor Process.62, 23–30 (30). Crossref, Google Scholar
33. D. Spemann, private communication (IOM, Leibniz, 2017). Google Scholar
34. C. Jeynes, N. P. Barradas and E. Szilágyi, Anal. Chem.84, 6061–6069 (6069). Crossref, Google Scholar
35. P. Barradas, K. Arstila, G. Battistig, M. Bianconi, N. Dytlewski, C. Jeynes, E. Kótai, G. Lulli, M. Mayer, E. Rauhala, E. Szilágyi and M. Thompson, Nucl. Instrum. Methods B Phys. Res.266, 1338 (2008). Crossref, Google Scholar
36. J. L. Colaux and C. Jeynes, High accuracy traceable Rutherford backscattering spectrometry of ion implanted samples, Anal. Methods6, 120–129 (129). Crossref, Google Scholar
37. J. L. Colaux, C. Jeynes, K. C. Heasman and R. M. Gwilliam, Certified ion implantation fluence by high accuracy RBS, Analyst140, 3251–3261 (3261). Crossref, Google Scholar
38. J. L. Colaux, G. Terwagne and C. Jeynes, Nucl. Instrum. Methods Phys. Res. B349, 173–183 (183). Crossref, Google Scholar
42. T. F. Silva, C. L. Rodrigues, M. Mayer, M. V. Moro, G. F. Trindade, F. R. Aguirre, N. Added, M. A. Rizzutto and M. H. Tabacniks, MultiSIMNRA: A computational tool for self-consistent ion beam analysis using SIMNRA, Nucl. Instrum. Methods Phys. Res. B371, 86–89 (89). Crossref, Google Scholar
43. E. Garman, Leaving no element of doubt: Analysis of proteins using microPIXE, Struct. Fold. Des.7, R291–R299 (1999). Crossref, Google Scholar
44. E. F. Garman and G. W. Grime, Elemental analysis of proteins by microPIXE, Prog. Biophys. Mol. Biol.89, 173–205 (205). Crossref, Google Scholar
45. Protein Structure Determination: https://nucleus. iaea.org/sites/accelerators/CaseStudies/SitePages/Home.aspx. Google Scholar
46. N. P. Barradas, C. Jeynes and R. P. Webb, Simulated annealing analysis of Rutherford backscattering data, Appl. Phys. Lett.71, 291–293 (293). Crossref, Google Scholar
47. N. P. Barradas and C. Jeynes, Advanced physics and algorithms in the IBA DataFurnace, Nucl. Instrum. Methods Phys. Res. B266, 1875–1879 (1879). Crossref, Google Scholar
48. P. Schmor, Review of cyclotrons for the production of radioactive isotopes for medical and industrial applications, Rev. Accel. Sci. Technol.4, 103–116 (116). Link, Google Scholar
49. Cyclotron produced radionuclides; Principles and practice, Technical Reports Series No. 465 (International Atomic Energy Agency, 2008). Google Scholar
50. P. Schaeffer et al., Direct production of 99mTc via 100Mo(p,2n) on small medical cyclotrons, Phys. Procedia66, 383–395 (395). Crossref, Google Scholar
51. U. Zetterberg, A change in usage of cyclotrons for medical isotope production? (2015). Google Scholar
52. Advanced Biomarker Technologies (ABT), http://abtmi.com/en/our-solutions/overview. Google Scholar
53. J. Munilla, Compact accelerators for radio isotope production: The AMIT project (2016), https://indico.cern.ch/event/659942/contributions/26919 92/attachments/1525348/2384898/AMIT_ARIES.pdf. Google Scholar
54. P. C. Portela, Compact accelerators for radio isotope production: The AMIT project (2017), https://indico.cern.ch/event/659942/contributions/2691992/attachments/1525348/2384898/AMIT_ARIES.pdf. Google Scholar
55. M. K. Dey et al., Design of ultra-light superconducting proton cyclotron for production isotopes for medial applications, in Proc. Cyclotrons 2013, Vancouver, BC, Canada (2013), pp. 447–450. Google Scholar
56. J. Vincent et al., The Ionetix ion-12SC compact superconducting cyclotron for production of medical isotopes, in Proc. Cyclotrons 2016, Zurich, Switzerland (2016), pp. 290–293. Google Scholar
57. V. Smirnov et al., Phys. Particles Nucl. Lett.11(6), 774–787 (2014). Crossref, Google Scholar
58. ISOTRACE, https://www.pmbalcen.com/sites/pmbalcen.com/files/pdf/datasheet_isotrace_imigine.pdf. Google Scholar
59. J. B. Nacteral et al., Development of the cyclone KUUBE: A compact, high performance and self-shielded cyclotron for radioisotope production, in Proc. Cyclotrons 2016, Zurich, Switzerland (2016) pp. 238–240. Google Scholar
60. S. Zaremba et al., Magnet design of the new IBA cyclotron for PET radioisotope production, in Proc. Cyclotrons 2016, Zurich, Switzerland (2016), pp. 170–172. Google Scholar
61. W. Kleeven et al., Extraction system design for the new IBA cyclotron for PET radioisotope production, in Proc. Cyclotrons 2016, Zurich, Switzerland (2016), pp. 167–169. Google Scholar
62. General Electric Health Care, GENTrace Cyclotron, http://www3.gehealthcare.com/∼/media/downloads/us/product/product-categories/moleculer%20imaging/pet%20radiopharmacy/cyclotrons/gt_cyclotron_system_data_sheet_rev2.pdf?Parent = %7B442067E1-C933-4B8E-8D5B-1. Google Scholar
63. J. Chen, Z. Guo and K. Liu, Rev. Accel. Sci. Technol.4, 117–145 (145). Link, Google Scholar
64. S. M. Fahrni, L. Wacker, H. A. Synal and S. Szidat, Improving a gas ion source for C-14 AMS, Nucl. Instrum. Methods Phys. Res. B294, 320–327 (327). Crossref, Google Scholar
65. J. S. Vogel, Anion formation in sputter ion sources by neutral resonant ionization, Rev. Sci. Instrum.87(2), 504 (2016). Crossref, Google Scholar
66. L. Wacker, C. Münsterer, B. Hattendorf, M. Christl, D. Günther and H.-A. Synal, Direct coupling of a laser ablation cell to an AMS, Nucl. Instrum. Methods Phys. Res. B294, 287–290 (2013b). Crossref, Google Scholar
67. C. Welte, L. Wacker, B. Hattendorf, M. Christl, J. Koch, H.-A. Synal and D. Günther, Novel laser ablation sampling device for the rapid radiocarbon analysis of carbonate samples by accelerator mass spectrometry, Radiocarbon58, 419–435 (435). Crossref, Google Scholar
68. I. Galli, S. Bartalini, R. Ballerini, M. Barucci, P. Cancio, M. De Pas, G. Giusfredi, D. Mazzotti, N. Akikusa and P. De Natale, Spectroscopic detection of radiocarbon dioxide at parts-perquadrillion sensitivity, Optica3(4), 385–388 (2016). Crossref, Google Scholar
69. A. D. McCartt, T. J. Ognibene, G. Bench and K. W. Turteltaub, Quantifying carbon-14 for biology using cavity ring-down spectroscopy, Anal. Chem.88(17), 8714–8719 (2016). Crossref, Google Scholar
70. D. Long, A. J. Fleisher, Q. Liu and J. T. Hodges, Optical radiocarbon detection of 14C using a quantum cascade laser, in Conf. Lasers and Electro-Optics (OSA Technical Digest, 2016). Crossref, Google Scholar
71. S. P. H. T. Freeman, R. P. Shanks, X. Donzel and G. Gaubert, Radiocarbon positive-ion mass spectrometry, Nucl. Instrum. Methods Phys. Res. B361, 229–232 (232). Crossref, Google Scholar
72. B. E. Rosenheim, M. B. Day, E. Domack, H. Schrum, A. Benthien and J. M. Hayes, Antarctic sediment chronology by programmed-temperature pyrolysis: Methodology and data treatment, Geochem. Geophys. Geosyst.9, Q04005 (2008). Crossref, Google Scholar
73. T. S. Bianchi et al., Paleoreconstruction of organic carbon inputs to an oxbow lake in the Mississippi River watershed: Effects of dam construction and land use change on regional inputs, Geophys. Res. Lett.42(19), 7983–7991 (2015). Crossref, Google Scholar
74. E. K. Williams and B. E. Rosenheim, What happens to soil organic carbon as coastal marsh ecosystems change in response to increasing salinity? An exploration using ramped pyrolysis, Geochem. Geophys. Geosyst.16, 2322–2335 (2335). Crossref, Google Scholar
75. B. V. Gaglioti, et al., Radiocarbon age-offsets in an arctic lake reveal the long-term response of permafrost carbon to climate change, J. Geophys. Res. Biogeosci.119(8), 1630–1651 (2014). Crossref, Google Scholar
76. M. A. Pendergraft, Z. Dincer, J. L. Sericano, T. L. Wade, J. Kolasinski and B. E. Rosenheim, Linking ramped pyrolysis isotope data to oil content through PAH analysis, Environ. Res. Lett.8(4) (2013). Crossref, Google Scholar
77. P. L. Adikhari, K. Maiti, E. B. Overton, B. E. Rosenheim and B. D. Marx, Distributions and accumulation rates of polycyclic aromatic hydrocarbons in the northern Gulf of Mexico sediments, Environ. Pollution212, 413–423 (423). Crossref, Google Scholar
78. J. D. Hemingway, D. H. Rothman, K. E. Grant, S. Z. Rosengard, T. I. Eglinton, N. Haghipoure, L. Wacker and V. V. Galy, Reactivity-isotope relationships of natural organic matter, in Proc. NAS (2017). Google Scholar
79. A. G. Chmielewski et al., Recent developments in the application of electron accelerators for polymer processing, Rad. Phys. Chem.94, 147–150 (150). Crossref, Google Scholar
80. A. G. Chmielewski, Application of ionizing radiation to environment protection, Nukleonika50(S3), 17–24 (2005). Google Scholar
81. J. Orloff, M. Utlaut and L. Swanson, Applications of focused ion beams, in High Resolution Focused Ion Beams: FIB and its Applications (Springer, Boston, MA, 2003), pp. 205–290. Crossref, Google Scholar
82. A. Sipahigil et al., An integrated diamond nanophotonics platform for quantum optical networks, Science 6875 (2016). Google Scholar
83. J.-E. Mogonye, K. Hattar, P. G. Kotula, T. W. Scharf and S. V. Prasad, He implantation for improved tribiological performance in Au electrical contacts, J. Mater. Sci.50(1), 382–392 (2015). Crossref, Google Scholar
84. http://wotwisi4.in2p3.fr/IMG/pdf/book_abstracts_wotwisi-4_updatedmarch.pdf. Google Scholar
85. https://www.jstage.jst.go.jp/article/matertrans/55/3/55_MPR2013908/_pdf. Google Scholar
86. https://research.hud.ac.uk/institutes-centres/emma/wotwisi-5/. Google Scholar
87. Acquisition de la société Quertech par la société Ionics, http://pole-moveo.org/actualites/acquisition-de-societe-quertech-societe-ionics/. Google Scholar
88. Walibeam Industrial Platform for Ion Implantation, http://www.ionics-group.com/en/research-development/walibeam-industrial-platform. Google Scholar
91. Plasma Immersion Ion Implantation, http://www.ion-beam-services.com/. Google Scholar
92. H. Banthien, Implementation of an Industry 4.0 Strategy — The German Plattform Industrie 4.0, https://ec.europa.eu/digital-single-market/en/blog/implementation-industry-40-strategy-german-plattform-industrie-40. Google Scholar
93. REACH 2018, European chemical industries website, https://echa.europa.eu/reach-2018. Google Scholar
94. TSCA chemical substance inventory website, https://www.epa.gov/tsca-inventory. Google Scholar
95. X. Xu, P. S. Raman, R. Pang, N. Liu, A. Kursheed and J. A. van Kan, Performance test of a high brighteness nano aperture ion source, Nucl. Instrum. Methods Phys. Res. B404, 52–57 (2017). Crossref, Google Scholar
96. T. Kalvas, O. Tarvainen, J. Komppula, M. Laitinen, T. Sajavaara, H. Koivisto and A. Jokinen, Recent negative ion source activity at JYFL, AIP Conf. Proc.1515, 349 (2013), https://doi.org/10.1063/1.4792803. Crossref, Google Scholar
97. Y. Jongen, M. Abs, F. Genin, A. Nguyen, J. M. Capdevilla and D. Defrise, Nucl. Instrum. Methods Phys. Res. B79, 865 (1993). Crossref, Google Scholar
98. M. Abs, Y. Jongen, E. Poncelet and J.-L. Bol, Radiat. Phys. Chem.71(1–2), 287 (2004). Crossref, Google Scholar
99. J.-L. Bol, X-ray sterilization: Review of available configurations for small to large capacity sterilization facilities, in Proc.2011 Int. Meeting on Radiation Processing (IMRP), Montreal, Canada, to be published in Radiat. Phys. Chem.Google Scholar
100. https://science.energy.gov/hep/research/accelerator-stewardship/. Google Scholar
102. http://apae.ific.uv.es/apae/wp-content/uploads/2015/04/EuCARD_Applications-of-Accelerators-2017.pdf. Google Scholar
103. V. Smirnov and S. Vorozhtsov, Feasibility study of a cyclotron complex for hadron therapy, Nucl. Instrum. Methods Phys. Res. A887, 114–121 (2018). Crossref, Google Scholar
104. http:aaaa//www-pub.iaea.org/MTCD/Publications/PDF/P1251-cd/papers/65.pdf. Google Scholar
105. B. E. Carlsten et al., New source technologies and their impact on future light sources, Nucl. Instrum. Methods Phys. Res. A622(3), 657–668 (2010). Crossref, Google Scholar
106. C. Yamanaka, Future industrial application of free electron lasers, Nucl. Instrum. Methods Phys. Res. A318(1–3), 1–8 (1992). Crossref, Google Scholar
107. https://phys.org/news/2015-10-team-particle-prototype-feasibility-terahertz.html#nRlv. Google Scholar
108. J. Schreiber, P. R. Bolton and K. Parodi, Rev. Sci. Instrum.87, 071101 (2016). Crossref, Google Scholar
109. B. A. Ludewigt, P. A. Seidl, A. Persaud, Q. Ji, S. Steinke and S. S. Bulanov, Short intense ion pulses for radiation effects, J. Radiation Effects, Res. Eng.36(1), (2018). Google Scholar