World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Numerical inversion method for the Laplace transform based on Boubaker polynomials operational matrix

    https://doi.org/10.1142/S1793962322500106Cited by:1 (Source: Crossref)

    We investigate through this research the numerical inversion technique for the Laplace transforms cooperated by the integration Boubaker polynomials operational matrix. The efficiency of the presented approach is demonstrated by solving some differential equations. Also, this technique is combined with the standard Laplace Homotopy Perturbation Method. The numerical results highlight that there is a very good agreement between the estimated solutions with exact solutions.

    References

    • 1. Wu J. L., Chen C. F., Chen C. F. , Numerical inversion of Laplace transform using Haar wavelet operational matrices, IEEE Trans. Circuit. Syst. I 48 :120–122, 2001. Crossref, Web of ScienceGoogle Scholar
    • 2. Aznam S. M., Hussin A. , Numerical method for inverse Laplace transform with Haar wavelet operational matrix, Malays. J. Fundam. Appl. Sci. 8 :182–188, 2012. Google Scholar
    • 3. Babolian E., Masouri Z. , Direct method to solve Volterra integral equation of the first kind using operational matrix with block-pulse functions, J. Comput. Appl. Math. 220 :51–57, 2008. Crossref, Web of ScienceGoogle Scholar
    • 4. Rani D., Mishra V. , Numerical inverse Laplace transform based on Bernoulli polynomials operational matrix for solving nonlinear differential equations, Res. Phys. 16 :102836, 2020. Google Scholar
    • 5. Rani D., Mishra V., Cattani C. , Numerical inversion of Laplace transform based on Bernstein operational matrix, Math. Methods Appl. Sci. 41 :9231–9243, 2018. Crossref, Web of ScienceGoogle Scholar
    • 6. Rani D., Mishra V., Cattani C. , Numerical inverse Laplace transform for solving a class of fractional differential equations, Symmetry 11 :1–20, 2019. Crossref, Web of ScienceGoogle Scholar
    • 7. Sastre J., Defez E., Jadar L. , Application of Laguerre matrix polynomials to the numerical inversion of Laplace transforms of matrix functions, Appl. Math. Lett. 24 :1527–1532, 2011. Crossref, Web of ScienceGoogle Scholar
    • 8. Mishra V., Rani D. , Chebyshev Polynomial based numerical inverse laplace transform solutions of linear volterra integral and integro-differential equations, Am. Res. J. Math. 1 :22–32, 2015. Google Scholar
    • 9. Djilali S. , Herd behavior in a predator–prey model with spatial diffusion bifurcation analysis and Turing instability, J. Appl. Math. Comput. 58(1–2) :125–149, 2017. Crossref, Web of ScienceGoogle Scholar
    • 10. Djilali S. , Impact of prey herd shape on the predator–prey interaction, Chaos Solitons Fractals 120 :139–148, 2019. Crossref, Web of ScienceGoogle Scholar
    • 11. Djilali S. , Spatiotemporal patterns induced by cross-diffusion in predator-prey model with prey herd shape effect, Int. J. Biomath. 13(4) :2050030, 2020, https//doi.org/10.1142/S1793524520500308. Link, Web of ScienceGoogle Scholar
    • 12. Bentout S., Ghanbari B., Djilali S., Guin L. N. , Impact of predation in the spread of an infectious disease with time fractional derivative and social behavior, Int. J. Model. Simul. Scientific Comput. 12(4) :2150023, 2020. Link, Web of ScienceGoogle Scholar
    • 13. Djilali S., Ghanbari B. , Coronavirus pandemic A predictive analysis of the peak outbreak epidemic in South Africa, Turkey, and Brazil, Chaos, Solitons Fractals 138 :109971, 2020. Crossref, Web of ScienceGoogle Scholar
    • 14. Bentout S., Tridane A., Djilali S., Touaoula T. M. , Age-structured Modeling of COVID-19 Epidemic in the USA, UAE and Algeria, Alexandria Engin. J. 60(1) :401–411, 2020, https//doi.org/10.1016/j.aej.2020.08.053. Crossref, Web of ScienceGoogle Scholar
    • 15. Djilali S., Benahmadi L., Tridane A., Niri K. , Modeling the impact of unreported cases of the COVID-19 in the North African countries, Biology 9(11) :373, 2020, https://doi.org/10.3390/biology9110373. Crossref, Web of ScienceGoogle Scholar
    • 16. Bentout S., Chen Y., Djilali S. , Global dynamics of an SEIR model with two age structures and a nonlinear incidence, Acta Appl. Math. 2020, https://doi.org/10.1007/s10440-020-00369-z. Web of ScienceGoogle Scholar
    • 17. Ghanbari B., Kumar S., Kumar R. , A study of behaviour for immune and tumor cells in immunogenetic tumour model with non-singular fractional derivative, Chaos Solitons Fractals 133 :109619, 2020. Crossref, Web of ScienceGoogle Scholar
    • 18. Djilali S., Touaoula T. M., Miri S. E. H. , A Heroin epidemic model very general nonlinear incidence, treat-age, and global stability, Acta Appl. Math. 152(1) :171–194, 2017. Crossref, Web of ScienceGoogle Scholar
    • 19. Bentout S., Djilali S., Chekroun A. , Global threshold dynamics of an age structured alcoholism model, Int. J. Biomath. 14(3) :2150013, 2020, https://doi.org/10.1142/S1793524521500133. Link, Web of ScienceGoogle Scholar
    • 20. Rashidi M. M. et al., Comparative numerical study of single and two-phase models of nano-fluid heat transfer in wavy channel, Appl. Math. Mech. 35 :831–848, 2014. Crossref, Web of ScienceGoogle Scholar
    • 21. Kumar S. , A new analytical modelling for fractional telegraph equation via Laplace transform, Appl. Math. Model. 38(13) :3154–3163, 2014. Crossref, Web of ScienceGoogle Scholar
    • 22. Kumar S., Kumar A., Baleanu D. , Two analytical methods for time-fractional nonlinear coupled Boussinesq-Burger’s equations arise in propagation of shallow water waves, Nonlinear Dyn. 85 :699-715, 2016. Crossref, Web of ScienceGoogle Scholar
    • 23. Kumar S., Rashidi M. M. , New analytical method for gas dynamics equation arising in shock fronts, Comput. Phys. Commun. 185(7) :1947–1954, 2014. Crossref, Web of ScienceGoogle Scholar
    • 24. Goufo E. F. D., Kumar S., Mugisha S. B. , Similarities in a fifth-order evolution equation with and with no singular kernel, Chaos Solitons Fractals 30 :109467, 2020. Crossref, Web of ScienceGoogle Scholar
    • 25. S. Kumar et al., Analytical solution of fractional Navier–Stokes equation by using modified Laplace decomposition method, Ain Shams Eng. J. 5(2) :569–574, 2014. CrossrefGoogle Scholar
    • 26. Kumar S., Ghosh S., Samet B. , An analysis for heat equations arises in diffusion process using new Yang–Abdel–Aty–Cattani fractional operator, Math. Methods Appl. Sci. 43(9) :6062–6080, 2020. Crossref, Web of ScienceGoogle Scholar
    • 27. Kumar S. et al., A study of fractional Lotka–Volterra population model using Haar wavelet and Adams–Bashforth–Moulton methods, Math. Methods Appl. Sci. 43(8) :5564–5578, 2020. Crossref, Web of ScienceGoogle Scholar
    • 28. Boubake K. , On modified Boubaker polynomials: Some differential and analytical properties of the new polynomial issued from an attempt for solving bi-varied heat equation, Trends Appl. Sci. Res. 2 :540–544, 2007. CrossrefGoogle Scholar
    • 29. Zhao T. G., Naing L., Yue W. Y. , Some new features of the Boubaker polynomials expansion scheme BPES, Math. Notes 87 :175–178, 2010. Crossref, Web of ScienceGoogle Scholar
    • 30. Zhao T. G., Mahmoud B. K. B., Toumi M. A., Faromika O. P., Dada M., Awojoyogbe O. B., Mangnuson J., Lin F. , Some new properties of the applied-physics related Boubaker polynomials, Differ. Equ. Control Process. 1 :7–19, 2009. Google Scholar
    • 31. Davaeifar S., Rashidinia J. , Boubaker polynomials collocation approach for solving systems of nonlinear Volterra–Fredholm integral equations, J. Taibah Univ. Sci. 11 :1182–1199, 2017. Crossref, Web of ScienceGoogle Scholar
    • 32. Bolandtalat A., Babolian E., Jafari H. , Numerical solutions of multi-order fractional differential equations by Boubaker polynomials, Open Phys. 14(1) :28–33, 2016. Crossref, Web of ScienceGoogle Scholar
    • 33. Mirzaee F., Hoseini A. A. , Numerical solution of nonlinear Volterra–Fredholm integral equations using hybrid of block-pulse functions and Taylor series, Alex. Eng. J. 52 :551–555, 2013. CrossrefGoogle Scholar
    • 34. Cohen A. M. , Numerical Methods for Laplace Transform Inversion (Springer, New York, USA, 2007). Google Scholar
    • 35. Rabiei K., Ordokhani Y., Babolian E. , The Boubaker polynomials and their application to solve fractional optimal control problems, Nonlinear Dyn. 88(2) :1013–1026, 2016. Crossref, Web of ScienceGoogle Scholar
    • 36. Tripathi R., Mishra H. K. , Homotopy perturbation method with Laplace Transform (LT-HPM) for solving Lane–Emden type differential equations, Springer Plus 5 :1859, 2016. CrossrefGoogle Scholar
    • 37. He J. H. , Homotopy perturbation technique, Comput. Methods Appl. Mech. Eng. 178(3) :257–262, 1999. Crossref, Web of ScienceGoogle Scholar
    Remember to check out the Most Cited Articles!

    Check out our handbook collection in computer science!