World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Modeling and analysis of the transmission dynamics of mosquito-borne disease with environmental temperature fluctuation

    https://doi.org/10.1142/S1793962322500131Cited by:1 (Source: Crossref)

    Most of the vector-borne diseases show a clear dependence on seasonal variation, including climate change. In this paper, we proposed a nonautonomous mathematical model consisting of a periodic system of nonlinear differential equations. In the proposed model, the realistic functional forms for the different temperature-dependent parameters are considered. The autonomous system of the proposed model is also analyzed. The nontrivial solution of the autonomous model is locally asymptotically stable if R0<1. It is shown that a unique endemic equilibrium point of the autonomous model exists when R0>1 and proved that endemic solution is linearly stable when R0>1. The nonautonomous model is shown to have a nontrivial disease-free periodic state, which is globally asymptotically stable whenever temperature-dependent reproduction number is less than unity. It is observed that a unique positive endemic periodic solution of the nonautonomous system exists only when a temperature-dependent reproduction number greater than unity, which makes for the persistence of the disease. Numerical simulation has been carried out to support the analytical results and shows the effects of temperature variability in the life span of mosquitoes as well as the persistence of the disease.

    References

    • 1. Cailly P., Tranc A., Balenghiene T., Totyg C., Ezannoa P. , A climate-driven abundance model to assess mosquito control strategies, Ecol. Model. 227 :7–17, 2012. Crossref, ISIGoogle Scholar
    • 2. Chitnis N., Using mathematical models in controlling the spread of malaria. Program in applied mathematics, Ph.D. thesis, University of Arizona, 2005. Google Scholar
    • 3. Juliano S. , Population dynamics, Am. Mosq. Control Assoc. 23 :265–275, 2007. Crossref, ISIGoogle Scholar
    • 4. Mordecai A., Krijn P., Paaijmans R., Johnson B., Horin T., Moor E., McNally A., Pawar S., Ryan S., Smith T., Lafferty K. , Optimal temperature for malaria transmission is dramatically lower than previously predicted, Ecol. Lett. 16 :22–30, 2013. Crossref, ISIGoogle Scholar
    • 5. Wang J., Ogden N., Zhu H. , The impact of weather conditions on Culex Pipiens and Culex restuans (Diptera: Culicidae) abundance: A case study in peel region, J. Med. Entomol. 48(2) :468–475, 2011. Crossref, ISIGoogle Scholar
    • 6. WHO, Mosquito-borne diseases, https://www.who.int/neglected diseases/vector ecology/mosquito borne diseases/en/(accessed July 25, 2019). Google Scholar
    • 7. Agusto F., Gumel A. B., Parham P. E. , Qualitative assessment of the role of temperature variations on malaria transmission dynamics, J. Biol. Syst. 23(4) :1–34, 2015. Link, ISIGoogle Scholar
    • 8. Githeko A. K., Lindsay S. W., Confalonieri U. E., Patz J. A. , Climate change and vector-borne diseases: A regional analysis, Bull. World Health Organ. 78 :1136–1147, 2000. ISIGoogle Scholar
    • 9. Watson R. T., Zinyowera M. C., Moss R. H., The regional impacts of climate change. An assessment of vulnerability. A special report of IPCC working group II. Technical report, Cambridge University Press, Oxford, 1998. Google Scholar
    • 10. Coutinho F., Burattini M., Lopez L., Massad E. , Threshold conditions for a non-autonomous epidemic system describing the population dynamics of dengue, Bull. Math. Biol. 68 :2263–2282, 2006. Crossref, ISIGoogle Scholar
    • 11. Massad E., Coutinho F. A. B., Lopez L. F., da Silva D. R. , Modeling the impact of global warming on vector-borne infections, Phys. Life Rev. 8 :169–199, 2011. ISIGoogle Scholar
    • 12. Abdelrazec A., Gumel A. B. , Mathematical assessment of the role of temperature and rainfall on mosquito population dynamics, J. Math. Biol. 74 :1351–1395, 2017. Crossref, ISIGoogle Scholar
    • 13. Andraud M., Hens N., Beutels P. , A simple periodic-forced model for dengue fitted to incidence data in Singapore, Math. Biosci. 244 :22–28, 2013. Crossref, ISIGoogle Scholar
    • 14. Aron J. L., May R. M. , The Population Dynamics of Malaria in the Population Dynamics of Infectious Diseases: Theory and Applications, Springer, 1982, pp. 139–179. CrossrefGoogle Scholar
    • 15. Bacaer N. , Approximation of the basic reproduction number r0 for vector borne diseases with a periodic vector population, Bull. Math. Biol. 69(3) :1067–1091, 2007. Crossref, ISIGoogle Scholar
    • 16. Bacaer N., Dads E. H. A. , Genealogy with seasonality, the basic reproduction number, and the influenza pandemic, J. Math. Biol. 62 :741–762, 2011. Crossref, ISIGoogle Scholar
    • 17. Bacaer N., Guernaoui S. , The epidemic threshold of vector-borne diseases with seasonality, J. Math. Biol. 53 :421–436, 2006. Crossref, ISIGoogle Scholar
    • 18. Burattini M., Chen M., Chow A., Coutinho F. A. B., Goh K., Lopez L., Massad E. , Modelling the control strategies against dengue in Singapore, Epidemiol. Infect. 136 :309, 2008. Crossref, ISIGoogle Scholar
    • 19. Chavez J. P., Gotz T., Siegmund S., Wijaya K. P. , An SIR-dengue transmission model with seasonal effects and impulsive control, Math. Biosci. 289 :29–39, 2017. Crossref, ISIGoogle Scholar
    • 20. Chitnis N., Hardy D., Smith T. , A periodically-forced mathematical model for the seasonal dynamics of malaria in mosquitoes, Bull. Math. Biol. 74(5) :1098–1124, 2012. Crossref, ISIGoogle Scholar
    • 21. Codeco C. T., Daniel A. V., Coelho F. C. , Estimating the effective reproduction number of dengue considering temperature-dependent generation intervals, Epidemics 25 :101–111, 2018. Crossref, ISIGoogle Scholar
    • 22. Coutinho F. A. B., Burattini M., Lopez L., Massad E. , Threshold conditions for a non-autonomous epidemic system describing the population dynamics of dengue, Bull. Math. Biol. 68 :2263–2282, 2006. Crossref, ISIGoogle Scholar
    • 23. Dumont Y., Tchuenche J. , Mathematical studies on the sterile insect technique for the Chikungunya disease and Aedes albopictus, J. Math. Biol. 65(5) :809–854, 2011. Crossref, ISIGoogle Scholar
    • 24. Ewing D., Cobbold C. A., Purse B. V., Nunn M., White S. , Modelling the effect of temperature on the seasonal population dynamics of temperate mosquitoes, J. Theor. Biol. 400 :65–79, 2016. Crossref, ISIGoogle Scholar
    • 25. Lana R. M., Carneiroa T. G., Honoriob N. A., Codeco C. , Seasonal and nonseasonal dynamics of Aedes aegypti in Rio de Janeiro, Brazil: Fitting mathematical models to trap data, Acta Trop. 129 :25–32, 2014. Crossref, ISIGoogle Scholar
    • 26. McLennan Smith T., Mercer G. , Complex behaviour in a dengue model with a seasonally varying vector population, Math Biosci. 248(1) :22–30, 2014. Crossref, ISIGoogle Scholar
    • 27. Nwankwo A., Okuonghae D. , A mathematical model for the population dynamics of malaria with a temperature dependent control, Differ. Equ. Dyn. Syst. 1–30, 2019, https://doi.org/10.1007/s12591-019-00466-y. Google Scholar
    • 28. O’Farrell H., Gourley S. A. , Modelling the dynamics of bluetongue disease and the effect of seasonality, Bull. Math. Biol. 76 :1981–2009, 2014. Crossref, ISIGoogle Scholar
    • 29. Okuneye K., Gumel A. B. , Analysis of a temperature- and rainfall-dependent model for malaria transmission dynamics, Math. Biosci. 287 :72–92, 2017. Crossref, ISIGoogle Scholar
    • 30. Taghikhani R., Gumel A. B. , Mathematics of dengue transmission dynamics: Roles of vector vertical transmission and temperature fluctuations, Infect. Dis. Model. 3 :266–292, 2018. CrossrefGoogle Scholar
    • 31. Traore B., Sangare B., Traore S. , A mathematical model of malaria transmission with structured vector population and seasonality, J. Appl. Math. 2017(4) :1–15, 2017. CrossrefGoogle Scholar
    • 32. Wang J. , The backward bifurcation of a model for malaria infection, Int. J. Biomath. 11(2) :1–18, 2018. Link, ISIGoogle Scholar
    • 33. Woodall H., Adams B. , Partial cross-enhancement in models for dengue epidemiology, J. Theor. Biol. 351 :67–73, 2014. Crossref, ISIGoogle Scholar
    • 34. Angel B., Joshi V. , Distribution and seasonality of vertically transmitted dengue viruses in Aedes mosquitoes in arid and semi-arid areas of Rajasthan, India, J. Vector Borne Dis. 45 :56–59, 2008. Google Scholar
    • 35. Hilker F., Westerhoff F. , Preventing extinction and outbreak in chaotic populations, Am. Nat. 170(2) :232–241, 2007. Crossref, ISIGoogle Scholar
    • 36. Lindblade K. A., Mwandama D., Mzilahowa T., Steinhardt L., Gimnig J., Gimnig J., Shah M., Bauleni A., Wong J., Wiegand R., Howell P., Zoya J., Chiphwanya J., Mathanga D. P. , A cohort study of the effectiveness of insecticide treated bed nets to prevent malaria in the area moderate pyrethroid resistance, Malawi, Malar. J. 14(31) :1–15, 2015. Google Scholar
    • 37. Afrane Y. A., Githeko A., Yan G. , The ecology of Anopheles mosquitoes under climate change: Case studies from the effects deforestation in East African highlands, Ann. New York Acad. Sci. 1249 :204–210, 2012. Crossref, ISIGoogle Scholar
    • 38. Scott T., Amerasinghe P., Morrison A. , Longitude studies of Aedes aegypti (Diptera: Culicidae) in Thailand and Puerto Rico: Blood feeding frequency, J. Med. Entomol. 37 :89–101, 2000. Crossref, ISIGoogle Scholar
    • 39. Lambrechts L., Paaijmansb K., Fansiri T. , Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti, Proc. Natl. Acad. Sci. USA 108 :7460–7465, 2011. Crossref, ISIGoogle Scholar
    • 40. Parham P. E., Pople D., Christiansen-Jucht C., Lindsay S., Hinsley W., Michael E. , Modeling the role of environmental variables on the population dynamics of the malaria vector Anopheles gambiae sensu stricto, Malaria J. 11(271) :1–13, 2012. Google Scholar
    • 41. Diekmann O., Heesterbeek J., Metz J. , On the definition and the computation of the basic reproduction ratio r0 in models for infectious diseases in heterogeneous populations, J. Math. Biol. 28 :365–382, 1990. Crossref, ISIGoogle Scholar
    • 42. Heffernan J., Smith R., Wahl L. , Perspectives on the basic reproductive ratio, J. R. Soc. Interface 2 :281–293, 2005. Crossref, ISIGoogle Scholar
    • 43. van den Driesche P., Watmough J. , Reproduction numbers and sub-threshold endemic equilibria for the compartmental models of disease transmission, Math. Biosci. 180 :29–48, 2002. Crossref, ISIGoogle Scholar
    • 44. Bacaer N., Ouifki R. , Growth rate and basic reproduction number for population models with a simple periodic factor, Math. Biosci. 210 :647–658, 2007. Crossref, ISIGoogle Scholar
    • 45. Wang W., Zhao X. Q. , Threshold dynamics for compartmental epidemic models in periodic environments, J. Dyn. Differ. Equ. 20(3) :699–717, 2008. Crossref, ISIGoogle Scholar
    • 46. Zhang F., Zhao X. , Periodic epidemic model in a patchy environment, J. Math. Anal. Appl. 325 :496–516, 2007. Crossref, ISIGoogle Scholar
    • 47. Xiao Z., Qiang , CMS Books in Mathematics/Ouvrages de Mathematiques de la SMC, 16th edn., Springer Verlag, New York, NY, USA, 2003. Google Scholar
    • 48. Dias C., Moraes D. , Essential oils and their compounds as Aedes aegypti L. (Diptera: Culicidae) larvicides: Review, Parasitol. Res. 113(2) :565–592, 2014. Crossref, ISIGoogle Scholar
    • 49. WHO, Temephos in drinking water: Use for vector control in drinking water sources and containers, https://www.who.int/docs/default-source/wash- documents/wash-chemicals/temephos-background-document.pdf?sfvrsn=c34fda71_4. Google Scholar
    Remember to check out the Most Cited Articles!

    Check out our handbook collection in computer science!