World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Effect of sintering temperature on structural, magnetic, dielectric and optical properties of Ni–Mn–Zn ferrites

    https://doi.org/10.1142/S2010135X21500284Cited by:6 (Source: Crossref)

    Spinel ferrite Ni0.08Mn0.90Zn0.02Fe2O4 was prepared by a conventional ceramic process followed by sintering at three different temperatures (1050 C, 1100 C and 1150 C). X-ray diffraction (XRD) investigations stated the single-phase cubic spinel structure and the FTIR spectra revealed two prominent bands within the wavenumber region from 600 cm1 to 400 cm1. Surface morphology showed highly crystalline grain development with sizes ranging from 0.27 μm to 0.88 μm. The magnetic hysteresis curve at ambient temperature revealed a significant effect of sintering temperature on both coercivity (Hc) and saturation magnetization (Ms). Temperature caused a decrease in DC electrical resistivity, while the electron transport increased, suggesting the semiconducting nature of all samples and that they well followed the Arrhenius law from which their activation energies were determined. The values of Curie temperature (Tc) and activation energy were influenced by the sintering temperature. Frequency-dependent dielectric behavior (100 Hz–1 MHz) was also analyzed, which may be interpreted by the Maxwell–Wagner-type polarization. The UV–vis–NIR reflectance curve was analyzed to calculate the bandgap of ferrites, which showed a decreasing trend with increasing sintering temperature.

    References

    • 1. A. Sutka, G. Mezinskis and A. Lusis , Electric and dielectric properties of nanostructured stoichiometric and excess-iron Ni–Zn ferrites, Phys. Scr. 87, 025601 (2013). CrossrefGoogle Scholar
    • 2. Z. Z. Lazarevic, C. Jovalekic, A. Milutinovic, D. Sekulic, V. N. Ivanovski, A. Recnik, B. Cekic and N. Z. Romcevic , Nanodimensional spinel NiFe2O4  and ZnFe2O4  ferrites prepared by soft mechanochemical synthesis, J. Appl. Phys. 113, 187221 (2013). CrossrefGoogle Scholar
    • 3. M. Shahjahan, N. A. Ahmed, S. N. Rahman, S. Islam, N. Khatun and M. S. Hossain , Structural and electrical characterization of Li-Zn ferrites, Int. J. Innov. Technol. Explor. Eng. 3, 48 (2014). Google Scholar
    • 4. M. S. Hossain, M. B. Alam, M. Shahjahan, M. H. A. Begum, M. Hossain, S. Islam, N. Khatun, M. S. Alam and M. A. Mamun , Synthesis, structural investigation, dielectric and magnetic properties of Zn2+ doped cobalt ferrite by the sol–gel technique, J. Adv. Dieletr. 08, 1850030 (2018). LinkGoogle Scholar
    • 5. K. Praveena, K. Sadhana, S. Matteppanavar and H. L. Liu , Effect of sintering temperature on the structural, dielectric and magnetic properties of Ni0.4Zn0.2Mn0.4Fe2O4 potential for radar absorbing, J. Magn. Magn. Mater. 423, 343 (2017). CrossrefGoogle Scholar
    • 6. P. Thakur, D. Chahar, S. Taneja, N. Bhalla and A. Thakur , A review on MnZn ferrites: Synthesis, characterization and applications, Ceram. Int. 46, 15740 (2020). CrossrefGoogle Scholar
    • 7. W. Wang, C. Zang and Q. Jiao , Synthesis, structure and electromagnetic properties of Mn-Zn ferrite by sol-gel combustion technique, J. Magn. Magn. Mater. 349, 116 (2014). CrossrefGoogle Scholar
    • 8. J. T. Jang, H. Nah, J. H. Lee, S. H. Moon, M. G. Kim and J. Cheon , Critical enhancements of MRI contrast and hyperthermic effects by dopant-controlled magnetic nanoparticles, Angew. Chem., Int. Ed. 48, 1234 (2009). CrossrefGoogle Scholar
    • 9. M. I. A. A. Maksoud, G. S. El-Sayyad, A. M. El-Khawaga, M. A. Elkodous, A. Abokhadra, M. A. Elsayed, M. Gobara, L. I. Soliman, H. H. El-Bahnasawy and A. H. Ashour , Nanostructured Mg substituted Mn-Zn ferrites: A magnetic recyclable catalyst for outstanding photocatalytic and antimicrobial potentials, J. Hazard. Mater. 399, 12300 (2020). Google Scholar
    • 10. A. Hajalilou, M. Hashim and H. M. Kamari , Effects of additives and sintering time on the microstructure of Ni-Zn ferrite and its electrical and magnetic properties, Adv. Mater. Sci. Eng. 2014, 138789 (2014). CrossrefGoogle Scholar
    • 11. G. Ott, J. Wrba and R. Lucke , Recent developments of Mn–Zn ferrites for high permeability applications, J. Magn. Magn. Mater. 254–255, 535 (2003). CrossrefGoogle Scholar
    • 12. U. Ghazanfar, S. A. Siddiqi and G. Abbas , Structural analysis of the Mn–Zn ferrites using XRD technique, J. Mater. Sci. Eng. B 118, 84 (2005). CrossrefGoogle Scholar
    • 13. A. K. Singh, T. C. Goel and R. G. Mendiratta , Dielectric properties of Mn-substituted Ni-Zn ferrites, J. Appl. Phys. 91, 6626 (2002). CrossrefGoogle Scholar
    • 14. S. T. Mahmud, A. K. M. Akther Hossain, M. A. Hakim, M. Seki, T. Kawai and H. Tabata , Influence of microstructure on the complex permeability of spinel type Ni–Zn ferrite, J. Magn. Magn. Mater. 305, 269 (2006). CrossrefGoogle Scholar
    • 15. N. A. Ahmed, M. Shahjahan, S. M. Talukder, M. S. Hossain, M. H. A. Begum, R. L. Warnock, M. A. Haque and M. Hossain , Synthesis and characterization of structural, and electrical properties of Mg(0.25x)Cu(0.25x)Zn(1–0.5x)Fe2O4 ferrites by sol-gel method, Ukr. J. Phys. 64, 861 (2019). CrossrefGoogle Scholar
    • 16. K. Huang, X. Liu, S. Feng, J. Yu, X. Niu, F. Lv and X. Huang , Structural and magnetic properties of Cr-substituted NiCuZn ferrite, High Temp. Mater. Process. 35, 531 (2016). CrossrefGoogle Scholar
    • 17. A. Gadkari, T. Shinde and P. V. Mbekar , Influence of rare-earth ions on structural and magnetic properties of CdFe2O4 ferrites, J. Rare Met. 29, 168 (2010). CrossrefGoogle Scholar
    • 18. M. Sinha and S. K. Pradhan , Synthesis of nanocrystalline Cd–Zn ferrite by ball milling and its stability at elevated temperatures, J. Alloys Compd. 489, 91 (2010). CrossrefGoogle Scholar
    • 19. M. S. Hossain, Y. Akter, M. Shahjahan, M. S. Bashar, M. H. A. Begum, M. M. Hossain, S. Islam, N. Khatun and M. Al-Mamun , Influence of Ni substitution on structural, morphological, dielectric, magnetic and optical properties of Cu-Zn ferrite by double sintering sol-gel technique, J. Adv. Dieletr. 09, 1950020 (2019). LinkGoogle Scholar
    • 20. A. K. Singh, A. Verma, O. P. Thakur, C. Prakash, T. C. Goel and R. G. Mendiratta , Electrical and magnetic properties of Mn–Ni–Zn ferrites processed by citrate precursor method, Mater. Lett. 57, 1040 (2003). CrossrefGoogle Scholar
    • 21. P. Pulisova, J. Kovac, A. Voigt and P. Raschman , Structure and magnetic properties of Co and Ni nano-ferrites prepared by a two step direct microemulsions synthesis, J. Magn. Magn. Mater. 341, 93 (2013). CrossrefGoogle Scholar
    • 22. M. H. A. Begum, N. Khatun, S. Islam, N. A. Ahmed, M. S. Hossain, M. A. Gafur and A. Siddika , Synthesis and characterization of structural, magnetic and electrical properties of Ni–Mn–Zn ferrites, Int. J. Nanoelectron. Mater. 11, 15 (2018). Google Scholar
    • 23. M. George, S. S. Nair, K. A. Malini, P. A. Joy and M. R. Anantharaman , Finite size effects on the electrical properties of sol–gel synthesized CoFe2O4 powders: Deviation from Maxwell–Wagner theory and evidence of surface polarization effects, J. Phys. D, Appl. Phys. 40, 1593 (2006). CrossrefGoogle Scholar
    • 24. T. P. Raming, A. J. A. Winnubust, C. M. Van Kats and A. P. Philipse , The synthesis and magnetic properties of nanosized hematite (α-Fe2O3) particles, J. Colloid Interface Sci. 249, 346 (2002). CrossrefGoogle Scholar
    • 25. S. C. Mazumdar, A. T. Traina, M. J. Miah and M. I. Khan , Effect of Sr-substitution on the structural and magnetoelectric properties of Ni-Zn ferrites, Bang. J. Phys. 26, 1 (2019). Google Scholar
    • 26. F. F. Lange and B. J. Kellett , Thermodynamics of densification: II, Grain growth in porous compacts and relation to densification, J. Am. Ceram. Soc. 72, 735 (1989). CrossrefGoogle Scholar
    • 27. S. Mirzaee, Y. Azizian-Kalandaragh and P. Rahimzadeh , Modified co-precipitation process effects on the structural and magnetic properties of Mn-doped nickel ferrite nanoparticles, Solid State Sci. 99, 106052 (2020). CrossrefGoogle Scholar
    • 28. M. Kaiser , Effect of nickel substitutions on some properties of Cu-Zn ferrites, J. Alloys. Compd. 468, 15 (2009). CrossrefGoogle Scholar
    • 29. R. D. Waldron , Infrared spectra of ferrites, Phys. Rev. 99, 1727 (1955). CrossrefGoogle Scholar
    • 30. R. C. Kambale, P. A. Shaikh, S. S. Kamble and Y. D. Kolekar , Effect of cobalt substitution on structural, magnetic and electric properties of nickel ferrite, J. Alloys Compd. 478, 599 (2009). CrossrefGoogle Scholar
    • 31. M. Klokkenburg, C. Vonk, E. M. Claesson, J. D. Meeldijik, B. H. Erne and A. P. Philipse , Direct imaging of zero-field dipolar structures in colloidal dispersions of synthetic magnetite, J. Am. Chem. Soc. 126, 51 (2004). CrossrefGoogle Scholar
    • 32. Q. Li, C. W. Kartikowati, S. Horie, T. Ogi, T. Iwaki and K. Okuyama , Correlation between particle size/domain structure and magnetic properties of highly crystalline Fe3O4 nanoparticles, Sci. Rep. 7, 9894 (2017). CrossrefGoogle Scholar
    • 33. G. F. Goya, T. S. Berquó, F. C. Fonseca and M. P. Morales , Static and dynamic magnetic properties of spherical magnetite nanoparticles, J. Appl. Phys. 94, 3520 (2003). CrossrefGoogle Scholar
    • 34. G. Herzer , Nanocrystalline soft magnetic materials, J. Magn. Magn. Mater. 112, 258 (1992). CrossrefGoogle Scholar
    • 35. Y. B. Kannan, R. Saravanan, N. Srinivasan and I. Ismail , Sintering effect on structural, magnetic and optical properties of Ni0.5Zn0.5Fe2O4 ferrite nano particles, J. Magn. Magn. Mater. 423, 217 (2017). CrossrefGoogle Scholar
    • 36. K. Rana, P. Thakur, P. Sharma, M. Tomar, V. Gupta and A. Thakur , Improved structural and magnetic properties of cobalt nanoferrites: Influence of sintering temperature, Ceram. Int. 41, 4492 (2014). CrossrefGoogle Scholar
    • 37. H. R. Lakshmiprasanna, V. J. Angadi, B. R. Babu, M. Pasha, K. Manjunatha and S. Matteppanavar , Effect of Pr3+-doping on the structural, elastic and magnetic properties of Mn–Zn ferrite nanoparticles prepared by solution combustion synthesis method, Chem. Data Collect. 24, 100273 (2019). CrossrefGoogle Scholar
    • 38. T. Nakamura , Low-temperature sintering of Ni–Zn–Cu ferrite and its permeability spectra, J. Magn. Magn. Mater. 168, 285 (1997). CrossrefGoogle Scholar
    • 39. M. R. Barati , Characterization and preparation of nanocrystalline MgCuZn ferrite powders synthesized by sol–gel auto-combustion method, J. Sol-Gel Sci. Technol. 52, 171 (2009). CrossrefGoogle Scholar
    • 40. J. Kalarus, G. Kogias, D. Holz and V. T. Zaspalis , High permeability–high frequency stable MnZn ferrites, J. Magn. Magn. Mater. 324, 2788 (2012). CrossrefGoogle Scholar
    • 41. G. Herrera , Domain wall dispersions: Relaxation and resonance in Ni–Zn ferrite doped with V2O5, J. Appl. Phys. 108, 103901 (2010). CrossrefGoogle Scholar
    • 42. E. M. M. Ibrahim , The effect of sintering time and temperature on the electrical properties of MnZn ferrites, Appl. Phys. A 89, 203 (2007). CrossrefGoogle Scholar
    • 43. H. Su, H. Zhang, X. Tang and X. Xiang , High-permeability and high-Curie temperature NiCuZn ferrite, J. Magn. Magn. Mater. 283, 157 (2004). CrossrefGoogle Scholar
    • 44. X. M. Chen, H. Y. Ma, W. Ding, Y. Zhang, X. G. Zhao, X. Liang and P. Liu , Microstructure, dielectric, and piezoelectric properties of Pb0.92Ba0.08Nb2O60.25wt% TiO2 ceramics: Effect of sintering temperature, J. Am. Ceram. Soc. 94, 3364 (2011). CrossrefGoogle Scholar
    • 45. M. T. Hossain, S. Islam, M. H. Mondal and A. H. Khan , Studies on anomalous behavior at curie point Tcof some classes of mixed ferrites, Bang. J. Sci. Ind. Res. 41, 171 (2006). CrossrefGoogle Scholar
    • 46. C. G. Koops , On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies, Phys. Rev. B 83, 121 (1951). CrossrefGoogle Scholar
    • 47. K. W. Wagner , The distribution of relaxation times in typical dielectrics, Ann. Phys. 40, 817 (1973). Google Scholar
    • 48. K. Radha and D. Ravinder , Frequency and composition dependence of dielectric behavior of mixed Li-Cd ferrite, Indian J. Pure Appl. Phys. 33, 74 (1995). Google Scholar
    • 49. P. Hu, H. Yang, D. Pan, H. Wang, J. Tian, S. Zhang, X. Wang and A. A. Volinsky , Heat treatment effects on microstructure and magnetic properties of Mn-Zn ferrite powders, J. Magn. Magn. Mater. 322, 173 (2010). CrossrefGoogle Scholar
    • 50. M. Hanif, U. Rafiq, M. Anis-ur-Rehman and A. Ul Haq , Structural and dielectric properties of rare earth doped lithium nanoferrites for sensing applications, J. Supercond. Nov. Magn. 30, 3573 (2017). CrossrefGoogle Scholar
    • 51. K. V. R. Prasad, A. R. Raju and K. B. R. Varma , Grain size effects on the dielectric properties of ferroelectric Bi2VO5.5 ceramics, J. Mater. Sci. 29, 2691 (1994). CrossrefGoogle Scholar
    • 52. M. M. Haque, M. Huq and M. A. Hakim , Influence of CuO and sintering temperature on the microstructure and magnetic properties of Mg–Cu–Zn ferrites, J. Magn. Magn. Mater. 320, 2792 (2008). CrossrefGoogle Scholar
    • 53. T. M. Hammad, J. K. Salem, A. A. Amsha and N. K. Hejazy , Optical and magnetic characterizations of zinc substituted copper ferrite synthesized by a co-precipitation chemical method, J. Alloys Compd. 741, 123 (2018). CrossrefGoogle Scholar