World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Chemical ordering and magnetic phase transitions in multiferroic BiFeO3–AFe1/2Sb1/2O3(A-Pb, Sr) solid solutions fabricated by a high-pressure synthesis

    https://doi.org/10.1142/S2010135X21600110Cited by:0 (Source: Crossref)
    This article is part of the issue:

    Ceramic samples of BiFeO3-based perovskite solid solutions with the highly ordered complex perovskites PbFe1/2Sb1/2O3(PFS) and SrFe1/2Sb1/2O3 (SFS) were obtained using high-pressure synthesis at 4–6 GPa. Mössbauer studies revealed that BiFeO3-SFS compositions are characterized by a larger compositional inhomogeneity as compared to BiFeO3-PFS ones. In line with this result, concentration dependence of the magnetic phase transition temperature TN for BiFeO3-SFS compositions is close to the TN(x) dependence for BiFeO3solid solution with disordered perovskite PbFe1/2Nb1/2O3(PFN). In contrast to this TN(x) dependence for BiFeO3-PFS compositions nicely follows the theoretical TN(x) dependence calculated for the case of the ordered distribution of Fe3+ and non-magnetic Sb5+ ions in the lattice (chemical ordering).

    References

    • 1. G. Catalan and J. F. Scott , Physics and applications of bismuth ferrite, Adv. Mater. 21, 2463 (2009). CrossrefGoogle Scholar
    • 2. D. I. Khomskii , Multiferroics: Different ways to combine mag- netism and ferroelectricity, J. Magn. Magn. Mater. 306(1), 1 (2006). CrossrefGoogle Scholar
    • 3. W. Eerenstein, N. D. Mathur and J. F. Scott , Multiferroic and magnetoelectric materials, Nature 442, 759 (2006). CrossrefGoogle Scholar
    • 4. D. A. Sanchez, N. Ortega, A. Kumar, G. Sreenivasulu, R. S. Katiyar, J. F. Scott, D.M. Evans, M. Arredondo-Arechavala, A. Schilling and J. M. Gregg , Room-temperature single phase multiferroic magnetoelectrics: Pb(Fe,M)x(Zr,Ti)(1x)O3 [M=Ta, Nb], J. Appl. Phys. 113, 074105 (2013). CrossrefGoogle Scholar
    • 5. V. V. Laguta, A. N. Morozovska, E. I. Eliseev, I. P. Raevski, S. I. Raevskaya, E. I. Sitalo, S. A. Prosandeev and L. Bellaiche , Room-temperature paramagnetoelectric effect in magnetoelectric multiferroics Pb(Fe1/2Nb1/2)O3 and its solid solution with PbTiO3, J. Mater. Sci. 51, 5330 (2016). CrossrefGoogle Scholar
    • 6. M. Azuma, H. Kanda, A. A. Belik, Y. Shimakawa and M. J. Takano , Magnetic and structural properties of BiFe1xMnxO3, J. Magn. Magn. Mater. 310, 1177 (2007). CrossrefGoogle Scholar
    • 7. M. D. Glinchuk, E. A. Eliseev and A. N. Morozovska , Novel room temperature multiferroics on the base of single-phase nanostructured perovskites, J. Appl. Phys. 116, 054101 (2014). CrossrefGoogle Scholar
    • 8. V. V. Laguta, V. A. Stephanovich, I. P. Raevski, S. I. Raevskaya, V. V. Titov, V. G. Smotrakov and V. V. Eremkin , Magnetoelectric effect in antiferromagnetic multiferroic Pb(Fe1/2Nb1/2)O3 and its solid solutions with PbTiO3, Phys. Rev. B 95, 014207 (2017). CrossrefGoogle Scholar
    • 9. B. Fraygola, A. A. Coelho and J. A. Eiras , Magnetoelectric coupling in Pb(Fe,W)O3 based ceramics, Ferroelectrics, 442(1), 50 (2013). CrossrefGoogle Scholar
    • 10. D. D. Khalyavin, A. N. Salak, N. M. Olekhnovich, A. V. Pushkarev, Y. V. Radyush, P. Manuel, I. P. Raevski, M. L. Zheludkevich and M. G. S. Ferreira , Polar and antipolar polymorphs of metastable perovskite BiFe0.5Sc0.5O3, Phys. Rev. B 89, 174414 (2014). CrossrefGoogle Scholar
    • 11. M. A. Gilleo , Superexchange interaction in ferromagnetic garnets and spinels which contain randomly incomplete linkages, J. Phys. Chem. Sol. 13(1–2), 33 (1960). CrossrefGoogle Scholar
    • 12. I. P. Raevski, S. P. Kubrin, S. I. Raevskaya, S. A. Prosandeev, D. A. Sarychev, M. A. Malitskaya, V. V. Stashenko and I. N. Zakharchenko , Studies of ferroelectric and magnetic phase transitions in Pb1xAxFe1/2Nb1/2O3 (A–Ca, Ba) solid solutions, Ferroelectrics 398(1), 16 (2010). CrossrefGoogle Scholar
    • 13. K. Kimura, K. Yokochi, R. Kondo, D. Urushihara, Y. Yamamoto, A. K. R. Ang, N. Happo, K. Ohara, T. Matsushita, T. Asaka, M. Iwata and K. Hayashi , Local structural analysis of Pb(Fe1/2Nb1/2)-O3 multiferroic material using X-ray fluorescence holography, Jpn. J. Appl. Phys. 58, 100601 (2019). CrossrefGoogle Scholar
    • 14. R. de Sousa, M. Allen and M. Cazayous , Theory of spin-orbit enhanced electric-field control of magnetism in multiferroic BiFeO3, Phys. Rev. Lett. 110, 267202 (2013). CrossrefGoogle Scholar
    • 15. S. I. Raevskaya, S. P. Kubrin, J. Zhuang, I. P. Raevski, M. A. Malitskaya, I. N. Zakharchenko, M. S. Panchelyuga and V. V. Titov , Mössbauer and magnetization studies of magnetic phase transitions in 0.5BiFeO3–0.5NaNbO3 and 0.5LaFeO3–0.5NaNbO3 solid solutions, J. Adv. Dielectr. 10(1–2), 2060005 (2020). LinkGoogle Scholar
    • 16. N. Setter and L. E. Cross , The role of B-site cation disorder in diffuse phase transition behavior of perovskite ferroelectrics. J. Appl. Phys. 51(8), 4356 (1980). CrossrefGoogle Scholar
    • 17. I. P. Raevski, S. A. Prosandeev, S. M. Emelyanov, F. I. Savenko, I. N. Zakharchenko, O. A. Bunina, A. S. Bogatin, S. I. Raevskaya, E. S. Gagarina, E. V. Sahkar and L. Jastrabik , Random-site cation ordering and dielectric properties of PbMg1/3Nb2/3O3PbSc1/2Nb1/2O3. Integr. Ferroelectrics 53, 475 (2003). Google Scholar
    • 18. A. A. Bokov, I. P. Raevski and V. G. Smotrakov, Composition, ferroelectric, and antiferroelectric ordering in Pb2InNbO6 crystals, Fizika Tverd. Tela 26(8), 2824 (1984). (Sov. Phys. Solid State. 26(9), 1708 (1984)). Google Scholar
    • 19. K. Ohwada and Y. Tomita , Experiment and theory of Pb(In1/2Nb1/2)- O3: Antiferroelectric, ferroelectric, or relaxor state depending on perovskite B-site randomness, J. Phys. Soc. Jpn. 79, 011012 (2010). CrossrefGoogle Scholar
    • 20. C. Cochard, X. Bril, O. Guedes and P. E. Janolin , Interpretation of polar orders based on electric characterizations: Example of Pb(YbNb)O3–PbTiO3 solid solution, J. Electron. Mater. 45(11), 6005 (2016). CrossrefGoogle Scholar
    • 21. P. K. Davies, H. Wu, A. Y. Borisevich, I. E. Molodetsky and L. Farber , Crystal chemistry of complex perovskites: New cation-ordered dielectric oxides, Annu. Rev. Mater Res. 38, 369 (2008). CrossrefGoogle Scholar
    • 22. V. V. Laguta, V. A. Stephanovich, M. Savinov, M. Marysko, R. O. Kuzian, N. M. Olekhnovich, A. V. Pushkarev, Yu. V. Radyush, I. P. Raevski, S. I. Raevskaya and S. A. Prosandeev , Superspin glass phase and hierarchy of interactions in multiferroic PbFe1/2Sb1/2O3: An analog of ferroelectric relaxors? New J. Phys. 16, 11304 (2014). CrossrefGoogle Scholar
    • 23. B. Argymbek, T. Kmjec, V. Chlan, J. Kohout, S. E. Kichanov, D. P. Kozlenko and B. N. Savenko , The crystal and magnetic structures of the ordered perovskite Pb2FeSbO6 studied by neutron diffraction and Mössbauer spectroscopy, J. Magn. Magn. Mater. 477, 334 (2019). CrossrefGoogle Scholar
    • 24. N. Lampis, P. Sciau and A. Geddo Lehmann , Rietveld refinements of the paraelectric and ferroelectric structures of PbFe0.5Nb0.5O3, J. Phys.: Condens. Matter 11, 3489 (1999). CrossrefGoogle Scholar
    • 25. S. A. Ivanov, R. Tellgren, H. Rundlof, N. W. Thomas and S. Ananta , Investigation of the structure of the relaxor ferroelectric Pb(Fe1/2Nb1/2)O3 by neutron powder diffraction, J. Phys.: Condens. Matter 12, 2393 (2000). CrossrefGoogle Scholar
    • 26. S. Nomura, H. Takabayashi and T. Nakagawa , Dielectric and magnetic properties of Pb(Fe1/2Ta1/2)O3, Jpn. J. Appl. Phys. 7, 600 (1968). CrossrefGoogle Scholar
    • 27. A. Kania, S. Miga, E. Talik, I. Gruszka, M. Szubka, M. Savinov, J. Prokleska and S. Kamba , Dielectric and magnetic properties, and electronic structure of multiferroic perovskite PbFe0.5Ta0.5O3 and incipient ferroelectric pyrochlore Pb2Fe0.34Ta1.84O7.11 single crystals and ceramics, J. Eur. Ceram. Soc. 36, 3369 (2016). CrossrefGoogle Scholar
    • 28. G. A. Smolenskii and V. M. Yudin , Weak ferromagnetism of some bismuth oxide-lead oxide-iron oxide-niobium oxide perovskites, Sov. Phys.-Solid St. 6, 2936 (1965). Google Scholar
    • 29. Yu. O. Zagorodniy, R. O. Kuzian, I. V. Kondakova, M. Marysko, V. Chlan, H. Štěpánková, N. M. Olekhnovich, A. V. Pushkarev, Yu. V. Radyush, I. P. Raevski, B. Zalar, V. V. Laguta and V. A. Stephanovich , Chemical disorder and 207Pb hyperfine fields in the magnetoelectric multiferroic Pb(Fe1/2Sb1/2)O3 and its solid solution with Pb(Fe1/2Nb1/2)O3, Phys. Rev. Mater. 2, 014401 (2018). CrossrefGoogle Scholar
    • 30. N. S. Druzhinina, Yu. I. Yuzyuk, I. P. Raevski, M. El Marssi, V. V. Laguta and S. I. Raevskaya , Raman spectra of PbFe0.5Nb0.5O3 multiferroic single crystals and ceramics, Ferroelectrics 438(1), 107 (2012). CrossrefGoogle Scholar
    • 31. V. A. Shuvaeva, I. Pirog, Y. Azuma, K. Yagi, K. Sakaue, H. Terauchi, I. P. Raevskii, K. Zhuchkov and M. Yu , Antipin, The local structure of mixed-ion perovskites, J Phys: Condens Matter 15, 2413 (2003). CrossrefGoogle Scholar
    • 32. E. Dul’kin, E. Mojaev, M. Roth, I. P. Raevski and S. A. Prosandeev , Nature of thermally stimulated acoustic emission from PbMg1/3Nb2/3O3–PbTiO3 solid solutions, Appl. Phys. Lett. 94, 252904 (2009). CrossrefGoogle Scholar
    • 33. W. Kleemann, V. V. Shvartsman, P. Borisov and A. Kania , Coexistence of antiferromagnetic and spin cluster glass order in the magnetoelectric relaxor multiferroic PbFe0.5Nb0.5O3, Phys. Rev. Lett. 105, 257202 (2010). CrossrefGoogle Scholar
    • 34. S. A. Prosandeev, I. P. Raevski, S. I. Raevskaya and H. Chen , Influence of epitaxial strain on clustering of iron in Pb(Fe1/2Nb1/2)O3 thin films, Phys. Rev. B 92, 220419(R) (2015). CrossrefGoogle Scholar
    • 35. W. Peng, N. Lemee, M. Karkut, B. Dkhil, V. Shvartsman, P. Borisov, W. Kleemann, J. Holc, M. Kosec and R. Blinc , Spin-lattice coupling in multiferroic Pb(Fe1/2Nb1/2)O3 thin films, Appl. Phys. Lett. 94, 012509 (2009). CrossrefGoogle Scholar
    • 36. A. A. Gusev, S. I. Raevskaya, V. V. Titov, E. G. Avvakumov, V. P. Isupov, I. P. Raevski, H. Chen, C.-C. Chou, S. P. Kubrin, S. V. Titov, M. A. Malitskaya, A. V. Blazhevich, D. A. Sarychev, V. V. Stashenko and S. I. Shevtsova , Dielectric and Mossbauer studies of Pb(Fe1/2Ta1/2)O3multiferroic ceramics sintered from mechanoactivated powders, Ferroelectrics 475(1), 41 (2015). CrossrefGoogle Scholar
    • 37. I. P. Raevski, S. P. Kubrin, A. V. Pushkarev, N. M. Olekhnovich, Y. V. Radyush, G. R. Li, C.-C. Chou, S. I. Raevskaya, V. V. Titov and M. A. Malitskaya , Magnetic phase transitions in solid solutions of Fe-containing perovskite multiferroics, Ferroelectrics, 542(1), 36 (2019). CrossrefGoogle Scholar
    • 38. V. A. Stephanovich, V. Laguta, M. Marysko, I. Raevsky, N. Olekhnovich, A. Pushkarev, Y. Radyush, S. Raevskaya, R. Kuzian, V. Chlan and H. Štěpánková , Cluster superconductivity in the magnetoelectric Pb(Fe1/2Sb1/2)O3 ceramics, Acta Phys. Pol. A 131(6), 1534 (2017). CrossrefGoogle Scholar
    • 39. S. A. Prosandeev, A. V. Fisenko, A. V. Riabchinski, I. A. Osipenko, I. P. Raevski and N. Safontseva , Study of intrinsic point defects in oxides of the perovskite family, I Theory, J. Phys.: Condens. Matter 8, 6705 (1996). CrossrefGoogle Scholar
    • 40. M. E. Matsnev and V. S. Rusakov , SpectrRelax: An application for Mössbauer spectra modeling and fitting, AIP Conf. Proc. 1489 178 (2012). CrossrefGoogle Scholar
    • 41. L. A. Shilkina, A. V. Pavlenko, L. A. Reznitchenko and I. A. Verbenko , Phase diagram of the system of (1–x)BiFeO3xPbFe0.5Nb0.5O3 solid solutions at room temperature, Crystallogr. Rep. 61(2), 263 (2016). CrossrefGoogle Scholar
    • 42. P. D. Battle, T. C. Gibb, A. J. Herod and J P. Hodges , Sol-gel synthesis of the magnetically frustrated oxides Sr2FeSbO6 and SrLaFeSnO6, J. Mater. Chem. 5(l), 75 (1995). CrossrefGoogle Scholar
    • 43. I. P. Raevski, N. M. Olekhnovich, A. V. Pushkarev, Y. V. Radyush, S. P. Kubrin, S. I. Raevskaya, M. A. Malitskaya, V. V. Titov and V. V. Stashenko , Mössbauer studies of PbFe0.5Nb0.5O3PbFe0.5Sb0.5O3 multiferroic solid solutions, Ferroelectrics 444(1), 47 (2013). CrossrefGoogle Scholar
    • 44. F. Menil , Systematic trends of the 57Fe Mössbauer isomer shifts in (FeOn) and (FeFn) polyhedra. Evidence of a new correlation between the isomer shift and the inductive effect of the competing bond T-X (*Fe) (Where X is O or F and T is any element with a formal positive charge), J. Phys. Chem. Solids 46(7), 763 (1985). CrossrefGoogle Scholar
    • 45. V. N. Lebedev , Temperature dependence of the isomeric Mössbauer -spectrum shift of weakly covalent compounds of the Fe3+ ion, Sov. Phys. J. 21, 41 (1978). CrossrefGoogle Scholar
    • 46. J. P. Patel, A. Senyshyn, H. Fuess and D. Pandey , Evidence for weak ferromagnetism, isostructural phase transition, and linear magnetoelectric coupling in the multiferroic Bi0.8Pb0.2Fe0.9Nb0.1O3 solid solution, Phys. Rev. B 88, 104108 (2013). CrossrefGoogle Scholar
    • 47. U. Prah, M. Wencka, T. Rojac, A. Benčana and H. Uršič , Pb(Fe0.5Nb0.5)O3–BiFeO3–based multicalorics with room-temperature ferroic anomalies, J. Mater. Chem. C 8, 11282 (2020). CrossrefGoogle Scholar
    • 48. J. B. Goodenough , Magnetism and Chemical Bond (Interscience Publisher, 1963). Google Scholar
    • 49. M. Eibschutz, S. Shtrikman and D. Treves , Mössbauer studies of Fe57 in orthoferrites, Phys. Rev. 156(2), 562 (1967). CrossrefGoogle Scholar