World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Materials Processing, Properties and Applications (Room E)Open Access

EFFECT OF HYDROGEN ON UNIAXIAL TENSILE BEHAVIORS OF A DUCTILE CAST IRON

    https://doi.org/10.1142/S2010194512003522Cited by:1 (Source: Crossref)

    Effect of the hydrogen-charging on the uniaxial tensile behaviors of a ductile cast iron was investigated. It was found that the hydrogen-charging accelerated the process of crack growth from graphite in the uniaxial tensile loading condition. Further, the accelerated crack growth had a marked influence on the reduction of area at the final fracture (RA) of specimens. For instance, for the uncharged specimens, the RA was nearly constant irrespective of the strain rate. In contrast, for the hydrogen-charged specimens, the RA gradually decreased as the strain rate decreased. Thermal desorption spectroscopy and hydrogen microprint technique revealed that, in the hydrogen-charged specimen, most of solute hydrogen was diffusive one, which was mainly segregated at graphite, graphite/matrix interface zone and pearlite. Based on these experimental observations, we consider that the hydrogen-induced degradation behavior was caused mainly by a combination of the following three mechanisms: (i) supplement of hydrogen to the crack tip from graphite and graphite–matrix interface, (ii) hydrogen-enhanced pearlite cracking and, (iii) successive hydrogen-emission from graphite and additional hydrogen-supplement to the crack tip.