On possible tachyonic state of neutrino dark matter
Abstract
We revive the historically first neutrino dark matter model, but with an additional assumption that neutrinos might exist in tachyonic almost sterile states. To this end we propose a group-theoretical algorithm for the description of tachyons. The key point is that we employ a distinct tachyon Lorentz group with another (superluminal) parametrization which does not require traditional introduction of imaginary masses and negative energies, and therefore does not lead to violation of causality and unitarity. Our dark matter model represents effectively scalar tachyonic neutrino-antineutrino conglomerate. Distributed all over the universe, such fluid behaves as stable isothermal/stiff medium which produces somewhat denser regions (‘smoothed halos’) around galaxies and clusters. It is shown to be consistent with observational effects (galactic rotation curves).