Computer-Assisted Three-Dimensional Corrective Osteotomy for Malunited Fractures of the Distal Radius Using Prefabricated Bone Graft Substitute
Abstract
Background: Three-dimensional computed tomography (3D-CT) imaging has enabled more accurate preoperative planning. The purpose of this study was to investigate the results of a novel, computer-assisted, 3D corrective osteotomy using prefabricated bone graft substitute to treat malunited fractures of the distal radius.
Methods: We investigated 19 patients who underwent the computer-assisted 3D corrective osteotomy for a malunited fracture of the distal radius after the operation was stimulated with CT data. A prefabricated bone graft substitute corresponding to the patient’s bone defect was implanted and internal fixation was performed using a plate and screws. We compared postoperative radiographic parameters of the patient’s operated side with their sound side and analyzed clinical outcomes using Mayo wrist score.
Results: All patients achieved bone union on X-ray imaging at final follow-up. The mean differences of palmar tilt, radial inclination and ulnar variance between the operation side and the sound side were 4.3°, 2.3° and 1.2 mm, respectively. The Mayo wrist score was fair in 4 patients and poor in 15 patients before surgery. At the final follow-up after surgery, the scores improved to excellent in 3 patients, good in 11 patients and fair in 5 patients. There were two patients with correction loss at the final follow-up, but no patient complained of hand joint pain.
Conclusions: We believe that computer-assisted 3D corrective osteotomy using prefabricated bone graft substitute achieved good results because it worked as a guide to the accurate angle.