World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
https://doi.org/10.1142/S2529807018400031Cited by:1 (Source: Crossref)
This article is part of the issue:

In this study, a fully 3D numerical model based on the Smoothed Particle Hydrodynamics (SPH) approach has been developed to simulate turbulent open channel flows over a fixed rough bed. The model focuses on the study of dynamic free surface behavior as well as its interaction with underlying flow structures near the rough bed. The model is improved from the open source code SPHysics (http://www.sphysics.org) by adding more advanced turbulence and rough bed treatment schemes. A modified sub-particle-scale (SPS) eddy viscosity model is proposed to reflect the turbulence transfer mechanisms and a modified drag force equation is included into the momentum equations to account for the existence of roughness elements on the bed as well as on the sidewalls. The computed results of various free surface patterns have been compared with the laboratory measurements of the fluctuating water surface elevations in the streamwise and spanwise directions of a rectangular open-channel flow under a range of flow conditions. The comparison has demonstrated that the proposed 3D SPH model can simulate well the complex free surface flows over a fixed rough bed.