Loading [MathJax]/jax/element/mml/optable/MathOperators.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

AVD proper edge-coloring of some families of graphs

    https://doi.org/10.1142/S2661335222500010Cited by:1 (Source: Crossref)

    Abstract

    Adjacent vertex-distinguishing proper edge-coloring is the minimum number of colors required for the proper edge-coloring of G in which no two adjacent vertices are incident to edges colored with the same set of colors. The minimum number of colors required for an adjacent vertex-distinguishing proper edge-coloring of G is called the adjacent vertex-distinguishing proper edge-chromatic index. Adjacent vertex-distinguishing proper edge-chromatic indices of the middle graph, splitting graph and shadow graph of path and cycle are determined. Adjacent vertex-distinguishing proper edge-chromatic indices of the triangular grid TnH-graph and generalized H-graph are also determined.

    1. Introduction

    For the terminology and notations, we refer to Ref. 1. Let G be a finite, simple, undirected and connected graph. Let Δ(G) denote the maximum degree of G. A proper edge-coloring σ is a mapping from E(G) to the set of colors such that any two adjacent edges receive distinct colors. For any vertex v of G, let Sσ(v) denote the set of colors of all edges incident to v. A proper edge-coloring σ is said to be adjacent vertex-distinguishing (AVD) if Sσ(u)Sσ(v) for every adjacent vertices u and v. The minimum number of colors required for an adjacent vertex-distinguishing proper edge-coloring of G, denoted by χas(G), is called the adjacent vertex-distinguishing proper edge-chromatic index (AVD proper edge-chromatic index) of G. Thus, χas(G)χ(G).

    Conjecture 1.1 (Ref. 2). For any connected graph G(|V(G)|6)χas(G)Δ(G)+2.

    If H is a subgraph of G, it is interesting that χas(H)χas(G) is not always true. Let Km,n be the complete bipartite graph, then χas(K2,3)=3, and K2,3e for any edge, then χas(K2,3e)=4. Deletion of an edge of a graph may also decrease the coloring number of the graph. Let n3, then χas(K1,n)=n and χas(K1,ne)=n1.

    In Ref. 2, Zhang et al. proved the following: if G has n components Gi,1in with at least three vertices in each, then χas(G)=max1in{χas(Gi)}. So we consider only connected graphs. For a tree T with |V(T)|3, if any two vertices of maximum degree are nonadjacent, then χas(T)=Δ(T). If T has two vertices of maximum degree which are adjacent, then χas(T)=Δ(T)+1. For the cycle Cn, we have χas(Cn)=3 for n0 (mod 3); otherwise, χas(Cn)=4 for n and n5, and χas(Cn)=5 for n=5. For the complete bipartite graph Km,n for 1mn, we have χas(Km,n)=n if m<n, and χas(Km,n)=n+2 if m=n2. For the complete graph Kn(n3), we have χas(Kn)=n for n1 (mod 2); and χas(Kn)=n+1 for n0 (mod 2). If G is a graph which has two adjacent maximum-degree vertices, then χas(G)Δ(G)+1. If G is a graph such that the degrees of any two adjacent vertices are different, then χas(G)=Δ(G) In Ref. 3, Shiu et al. proved the following: for n3, we have χas(Fn)=n if n=3,4, and χas(Fn1)=n1 for n5. For n3, we have χas(Wn)=5 if n=3, and χas(Wn)=n for n4. In Ref. 4, Hatami proved that if G is a graph with no isolated edges and maximum degree Δ(G)>1020, then χasΔ+300. In Ref. 5, Balister et al. proved the following: if G is a k-chromatic graph with no isolated edges, then χas(G)Δ(G)+O(logk). In Ref. 6, Axenovich et al. obtained the upper bound for adjacent vertex-distinguishing edge-colorings of graphs. In Ref. 7, Baril et al. obtained the exact values for adjacent vertex-distinguishing edge-coloring of meshes. In Ref. 8, Bu et al. found the adjacent vertex-distinguishing edge-colorings of planar graphs with a girth of at least six. In Ref. 9, Chen and Li obtained the adjacent vertex-distinguishing proper edge-coloring of planar bipartite graphs with Δ=9, 10 or 11.

    Observation 1.1. If a connected graph G contains two adjacent vertices of degree Δ(G), then χas(G)1+Δ(G).

    Observation 1.2. If G is a graph such that the degrees of any two adjacent vertices are different, then χas(G)=Δ(G).

    2. AVD Proper Edge-Chromatic Indices of Middle Graph, Splitting Graph and Shadow Graph

    In this section, we investigate the AVD proper edge-colorings of middle graph, splitting graph and shadow graph of path and cycle, and present the results in the following subsections.

    2.1. AVD proper edge-chromatic index of middle graph of path and cycle

    The middle graph M(G) of a connected graph G is the graph whose vertex set is V(G)E(G) and in which two vertices are adjacent if and only if either they are the adjacent edges of G or one is the vertex of G and the other is an edge incident on it.

    Theorem 2.1.

    χas(M(Pn))=3if n=2,4if n=3,4,5if n5.

    Proof. Let Pn=x1x2xn and e1,e2,,en1 be the edges of PnM(Pn) is the middle graph of Pn with vertices x1,x2,,xn1,xn,x1,x2,,xn1 such that fi=xixigi=xi+1xi, for i{1,2,,n1}, and hi=xixi+1, for i{1,2,,n2}, where e1=x1,e2=x2,,en1=xn1.

    Define σ:E(M(P2)){1,2,3} as follows: σ(f1)=2=σ(f2)σ(g1)=3 and σ(h1)=1. Therefore, σ is a proper edge-coloring. The induced vertex-color sets are: Sσ(x1)=2,Sσ(x2)={2,3}Sσ(x1)={1,2,3} and Sσ(x2)={1,2}. Hence, σ is an AVD proper edge-coloring of M(P2). By Observation 1.1χas(M(P2))3, and so χas(M(P2))=3. Define σ:E(M(P3)){1,2,3,4} as follows: σ(f1)=2=σ(f2)σ(g1)=3σ(g2)=4 and σ(h1)=1. Therefore, σ is a proper edge-coloring. The induced vertex-color sets are: Sσ(x1)=2Sσ(x2)={2,3}Sσ(x3)=4Sσ(x1)={1,2,3} and Sσ(x2)={1,2,4}. Hence, σ is an AVD proper edge-coloring of M(P3). By Observation 1.1χas(M(P3))4, and so χas(M(P3))=4. Define σ:E(M(P4)){1,2,3,4} as follows: σ(f1)=σ(f2)=σ(f3)=2σ(g1)=σ(g2)=σ(g3)=3σ(h1)=1 and σ(h2)=4. Therefore, σ is a proper edge-coloring. The induced vertex-color sets are: Sσ(x1)=2Sσ(x2)={2,3}=Sσ(x3),Sσ(x3)=3Sσ(x1)={1,2,3}Sσ(x2)={1,2,3,4} and Sσ(x3)={2,3,4}. Hence, σ is an AVD proper edge-coloring of M(P4). By Observation 1.1χas(M(P4))4, and so χas(M(P4))=4.

    For n5, since Δ(M(Pn))=4, by Observation 1.1χas(M(Pn))5. To show χas(M(Pn))5, we define σ:E(M(Pn)){1,2,3,4,5} as follows:

    for i{1,2,,n2},σ(hi)=1if i1 mod 3,4if i2 mod 3,5if i0 mod 3;for i{1,2,,n1},σ(fi)=2,σ(gi)=3.
    Therefore, σ is a proper edge-coloring. It remains to show that σ is an AVD proper edge-coloring. We compare the sets of colors of adjacent vertices of the same degree.

    The induced vertex-color sets are as follows:

    Sσ(x1)=2,Sσ(xn)=3,Sσ(xi)={2,3}for i{2,3,,n};for i{2,3,,n2},Sσ(xi)={1,2,3,4}if i2 mod 3,{2,3,4,5}if i0 mod 3,{1,2,3,5}if i1 mod 3,Sσ(x1)={1,2,3},Sσ(xn1)={2,3,5}if n11 mod 3,{1,2,3}if n12 mod 3,{2,3,4}if n10 mod 3.
    Therefore, σ is an AVD proper edge-coloring of M(Pn). Hence χas(M(Pn))=5. □

    Theorem 2.2. χas(M(Cn))=5 for n4.

    Proof. Let Cn=x1x2xnx1 and e1,e2,,en be the edges of CnM(Cn) is the middle graph of Cn with the vertices x1,x2,,xn1,xn,x1,x2,,xn1,xn such that fi=xixigi=xi+1xi and hi=xixi+1, for i{1,2,,n}, where xn+1=x1xn+1=x1 and e1=x1,e2=x2,,en1=xn1,en=xn.

    For n4, since Δ(M(Cn))=4, by Observation 1.1χas(M(Cn))5. To show χas(M(Cn))5, we consider two cases and in each case, we first define σ:E(M(Cn)){1,2,3,4,5} as follows:

    Case 1. If n is even,

    for i{1,2,,n},σ(hi)=4if i is odd,1if i is even;for i{1,2,,n},σ(fi)=2,σ(gi)=3if i is odd,5if i is even.
    Therefore, σ is a proper edge-coloring. It remains to show that σ is an AVD proper edge-coloring. We compare the sets of colors of adjacent vertices of the same degree.

    The induced vertex-color sets are as follows:

    for i{1,2,,n},Sσ(xi)={1,2,3,4}if i is odd,{1,2,4,5}if i is even;for i{1,2,,n},Sσ(xi)={2,5}if i is odd,{2,3}if i is even.
    Observe that σ is an AVD proper edge-coloring of M(Cn). Hence χas(M(Cn))=5.

    Case 2. If n is odd,

    for i{1,2,,n2},σ(hi)=4if i is odd,1if i is even,σ(hn1)=5,σ(hn)=1;for i{1,2,,n},σ(fi)=2;for i{1,2,,n2},σ(gi)=3if i is odd,5if i is even,σ(gn1)=1,σ(gn)=3.
    Therefore, σ is a proper edge-coloring. It remains to show that σ is an AVD proper edge-coloring. We compare the sets of colors of adjacent vertices of the same degree.

    The induced vertex-color sets are as follows:

    for i{1,2,,n1},Sσ(xi)={1,2,3,4}if i is odd,{1,2,4,5}if i is even,Sσ(xn)={1,2,3,5},Sσ(x1)={2,3},Sσ(xn)={1,2};for i{2,3,,n1},Sσ(xi)={2,3}if i is even,{2,5}if i is odd.
    Observe that σ is an AVD proper edge-coloring of M(Cn). Hence χas(M(Cn))=5. □

    2.2. AVD proper edge-chromatic index of splitting graph of path and cycle

    The splitting graph of a graph GS(G) is obtained by adding a new vertex v corresponding to each vertex v of G such that N(v)=N(v), where N(v) and N(v) are the neighborhood sets of v and v, respectively.

    Theorem 2.3.

    χas(S(Pn))=3if n=2,4if n=3,5if n4.

    Proof. Let Pn=x1x2xn and x1,x2,,xn be the newly added vertices corresponding to the vertices x1,x2,,xn to form S(Pn). In S(Pn) for i{1,2,,n1}, let ei=xixi+1fi=xixi+1 and gi=xi+1xi.

    Define σ:E(S(P2)){1,2,3} as follows: σ(e1)=1σ(f1)=3 and σ(g1)=2. Therefore, σ is a proper edge-coloring. The induced vertex-color sets are: Sσ(x1)={1,2}Sσ(x2)={1,3}Sσ(x1)=3 and Sσ(x2)=2. Hence, σ is an AVD proper edge-coloring of S(P2). By Observation 1.1χas(S(P2))3, and so χas(S(P2))=3.

    Define σ:E(S(P3)){1,2,3,4} as follows: σ(e1)=1σ(e2)=4σ(f1)=2=σ(g1) and σ(f2)=3=σ(g2). Therefore, σ is a proper edge-coloring. The induced vertex-color sets are: Sσ(x1)={1,2}Sσ(x2)={1,2,3,4}Sσ(x3)={3,4}Sσ(x1)=2Sσ(x2)={2,3} and Sσ(x3)=3. Therefore, σ is an AVD proper edge-coloring of S(P3). By Observation 1.1χas(S(P3))4, and so χas(S(P3))=4. Hence χas(S(P3))=4.

    For n4, since Δ(S(Pn))=4, by Observation 1.1χas(S(Pn))5. To show χas(S(Pn))5, we define σ:E(S(Pn)){1,2,3,4,5} as follows:

    for i{1,2,,n1},σ(ei)=1if i1 mod 3,4if i2 mod 3,5if i0 mod 3,σ(fi)=2,σ(gi)=3.
    Therefore, σ is a proper edge-coloring. It remains to show that σ is an AVD proper edge-coloring. We compare the sets of colors of adjacent vertices of the same degree.

    The induced vertex-color sets are as follows:

    Sσ(x1)={1,3};for i{2,3,,n1},Sσ(xi)={1,2,3,4}if i2 mod 3,{2,3,4,5}if i0 mod 3,{1,2,3,5}if i1 mod 3,Sσ(xn)={2,5}if n1 mod 3,{1,2}if n2 mod 3,{2,4}if n0 mod 3,Sσ(x1)=2,Sσ(xn)=3;for i{2,3,,n1},Sσ(xi)={2,3}.
    Observe that σ is an AVD proper edge-coloring of S(Pn). Hence χas(S(Pn))=5. □

    Theorem 2.4. χas(S(Cn))=5 for n4.

    Proof. Let Cn=x1x2xnx1, for n4, and x1,x2,,xn be the newly added vertices corresponding to the vertices x1,x2,,xn to form S(Cn). In S(Cn), for i{1,2,,n}, let ei=xixi+1fi=xixi+1 and gi=xi+1xi, where xn+1=x1 and xn+1=x1.

    For n4, since Δ(S(Cn))=4, by Observation 1.1χas(S(Cn))5. To show χas(S(Cn))5, we consider three cases and in each case, we first define σ:E(S(Cn)){1,2,3,4,5} as follows:

    Case 1. If n0 mod 3,

    for i{1,2,,n}σ(ei)=1if i1 mod 3,4if i2 mod 3,5if i0 mod 3,σ(fi)=2,σ(gi)=3.
    Therefore, σ is a proper edge-coloring. It remains to show that σ is an AVD proper edge-coloring. We compare the sets of colors of adjacent vertices of the same degree.

    The induced vertex-color sets are as follows:

    for i{1,2,3,,n},Sσ(xi)={1,2,3,5}if i1 mod 3,{1,2,3,4}if i2 mod 3,{2,3,4,5}if i0 mod 3,Sσ(xi)={2,3}.
    Observe that σ is an AVD proper edge-coloring of S(Cn). Hence χas(S(Cn))=5.

    Case 2. If n1 mod 3,

    for i{1,2,,n2},σ(ei)=1if i1 mod 3,4if i2 mod 3,5if i0 mod 3,σ(en)=5,σ(en1)=1;for i{1,2,,n3},σ(fi)=2,σ(fn)=4,σ(fn1)=2,σ(fn2)=5;for i{1,2,,n},σ(gi)=3.
    Therefore, σ is a proper edge-coloring. It remains to show that σ is an AVD proper edge-coloring. We compare the sets of colors of adjacent vertices of the same degree.

    The induced vertex-color sets are as follows:

    Sσ(x1)={1,3,4,5};for i{2,3,,n2},Sσ(xi)={1,2,3,4}if i2 mod 3,{2,3,4,5}if i0 mod 3,{1,2,3,5}if i1 mod 3,Sσ(xn1)={1,3,4,5},Sσ(xn)={1,2,3,5};for i{1,2,,n3},Sσ(xi)={2,3},Sσ(xn)={3,4},Sσ(xn1)={2,3},Sσ(xn2)={3,5}.
    Observe that σ is an AVD proper edge-coloring of S(Cn). Hence χas(S(Cn))=5.

    Case 3. If n2 mod 3,

    for i{1,2,,n2},σ(ei)=1if i1 mod 3,4if i2 mod 3,5if i0 mod 3,σ(en)=5,σ(en1)=1;for i{1,2,,n},σ(fi)=2;for i{1,2,,n1},σ(gi)=3,σ(gn)=4.
    Therefore, σ is a proper edge-coloring. It remains to show that σ is an AVD proper edge-coloring. We compare the sets of colors of adjacent vertices of the same degree.

    The induced vertex-color sets are as follows:

    Sσ(x1)={1,2,3,5};for i{2,3,,n2},Sσ(xi)={1,2,3,4}if i2 mod 3,{2,3,4,5}if i0 mod 3,{1,2,3,5}if i1 mod 3,Sσ(xn1)={1,2,3,5},Sσ(xn)={1,2,4,5},Sσ(x1)={2,4};for i{2,3,,n},Sσ(xi)={2,3}.
    Observe that σ is an AVD proper edge-coloring of S(Cn). Hence χas(S(Cn))=5. □

    2.3. AVD proper edge-chromatic index of shadow graph of path and cycle

    The shadow graph D2(G) of a connected graph G is constructed by taking two copies of G say G and G and joining each vertex u in G to neighbors of the corresponding vertex u in G.

    Theorem 2.5.

    χt(D2(Pn))=4if n=3,5if n4.

    Proof. Let Pn=x1x2xn and x1,x2,,xn be the newly added vertices corresponding to the vertices x1,x2,,xn to form D2(Pn). In D2(Pn), for i{1,2,,n1} let ei=xixi+1fi=xixi+1gi=xi+1xi and hi=xixi+1.

    Since D2(P2)C4 and χas(C4)=4, then χas(D2(P2))=4.

    Define σ:E(D2(P3)){1,2,3,4} as follows: σ(e1)=1=σ(h1)σ(e2)=4=σ(h2)σ(f1)=2=σ(g1) and σ(f2)=3=σ(g2). Therefore, σ is a proper edge-coloring. The induced vertex-color sets are: Sσ(x1)={1,2}=Sσ(x1)Sσ(x2)={1,2,3,4}=Sσ(x2) and Sσ(x3)={3,4}=Sσ(x3). Therefore, σ is an AVD proper edge-coloring of D2(P3). By Observation 1.1χas(D2(P3))4, and so χas(D2(P3))=4. Hence χas(D2(P3))=4.

    For n4, since Δ(D2(Pn))=4, by Observation 1.1χas(D2(Pn))5. To show χas(D2(Pn))5, we define σ:E(D2(Pn)){1,2,3,4,5} as follows:

    for i{1,2,,n},σ(ei)=σ(hi)=1if i1 mod 3,4if i2 mod 3,5if i0 mod 3,σ(fi)=σ(gi)=2if i is odd,3if i is even.
    Therefore, σ is a proper edge-coloring. It remains to show that σ is an AVD proper edge-coloring. We compare the sets of colors of adjacent vertices of the same degree.

    The induced vertex-color sets are as follows:

    Sσ(x1)={1,2}=Sσ(x1);for i{2,3,,n1},Sσ(xi)=Sσ(xi)={1,2,3,4}if i2 mod 3,{2,3,4,5}if i0 mod 3,{1,2,3,5}if i1 mod 3,Sσ(xn)=Sσ(xn)={2,5}if n1 mod 3,{1,3}if n2 mod 3,{2,4}if n0 mod 3;for i{2,3,,n1},Sσ(xi)={2,3}.
    Observe that σ is an AVD proper edge-coloring of D2(Pn). Hence χas(D2(Pn))=5. □

    Theorem 2.6.

    χas(D2(Cn))=5if n5 and n7,6if n=7.

    Proof. Let Cn=x1x2xnx1 and x1,x2,,xn be the newly added vertices corresponding to the vertices x1,x2,,xn to form D2(Cn). In D2(Cn), for i{1,2,,n}, let ei=xixi+1fi=xixi+1gi=xi+1xi and hi=xixi+1, where xn+1=x1 and xn+1=x1.

    For n=7, we define σ:E(D2(C7)){1,2,3,4,5,6} as follows: σ(e1)=σ(e4)=σ(h1)=σ(h4)=1σ(e2)=σ(e5)=σ(h2)=σ(h5)=4σ(e3)=σ(e6)=σ(h3)=σ(h6)=5σ(e7)=6=σ(h7)σ(f1)=σ(f3)=σ(f5)=σ(g1)=σ(g3)=σ(g5)=2σ(f2)=σ(f4)=σ(f6)=σ(g2)=σ(g4)=σ(g6)=3 and σ(f7)=4=σ(g7) Therefore, σ is a proper edge-coloring. The induced vertex-color sets are:

    Sσ(x1)={1,2,4,6}=Sσ(x1)Sσ(x2)=Sσ(x5)=Sσ(x2)=Sσ(x5)={1,2,3,4}Sσ(x3)=Sσ(x6)=Sσ(x3)=Sσ(x6)={2,3,4,5}Sσ(x4)={1,2,3,5}=Sσ(x4) and Sσ(x7)={3,4,5,6}=Sσ(x7). Therefore, σ is an AVD proper edge-coloring of D2(C7). By Observation 1.1χas(D2(C7))6, and so χas(D2(C7))=6. Hence χas(D2(C7))=6.

    For n5 and n7, since Δ(D2(Cn))=4, by Observation 1.1χas(D2(Cn))5. To show χas(D2(Cn))5, we consider five cases and in each case, we first define σ:E(D2(Cn)){1,2,3,4,5} as follows:

    Case 1. For n0 mod 3,

    for i{1,2,,n},σ(ei)=σ(hi)=1if i1 mod 3,4if i2 mod 3,5if i0 mod 3;for i{1,2,,n},σ(fi)=σ(gi)=2if i is odd,3if i is even.
    Therefore, σ is a proper edge-coloring. It remains to show that σ is an AVD proper edge-coloring. We compare the sets of colors of adjacent vertices of the same degree.

    The induced vertex-color sets are as follows:

    for i{1,2,,n},Sσ(xi)=Sσ(xi)={1,2,3,5}if i1 mod 3,{1,2,3,4}if i2 mod 3,{2,3,4,5}if i0 mod 3.
    Observe that σ is an AVD proper edge-coloring of D2(Cn). Hence χas(D2(Cn))=5.

    Case 2. For n5 mod 6,

    for i{1,2,,n1},σ(ei)=σ(hi)=1if i1 mod 3,4if i2 mod 3,5if i0 mod 3,σ(en)=σ(hn)=5;for i{1,2,,n1},σ(fi)=σ(gi)=2if i is odd,3if i is even,σ(fn)=σ(gn)=4.
    Therefore, σ is a proper edge-coloring. It remains to show that σ is an AVD proper edge-coloring. We compare the sets of colors of adjacent vertices of the same degree.

    The induced vertex-color sets are as follows:

    Sσ(x1)=Sσ(x1)={1,2,4,5};for i{2,3,,n1},Sσ(xi)=Sσ(xi)={1,2,3,4}if i2 mod 3,{2,3,4,5}if i0 mod 3,{1,2,3,5}if i1 mod 3,Sσ(xn)=Sσ(xn)={1,3,4,5}.
    Observe that σ is an AVD proper edge-coloring of D2(Cn). Hence χas(D2(Cn))=5.

    Case 3. For n1 mod 6 and n13,

    for i{1,2,,n6},σ(ei)=σ(hi)=1if i1 mod 3,4if i2 mod 3,5if i0 mod 3,σ(en)=σ(hn)=4,σ(en1)=σ(hn1)=3,σ(en2)=σ(hn2)=2,σ(en3)=σ(hn3)=4,σ(en4)=σ(hn4)=3,σ(en5)=σ(hn5)=5,σ(fi)=σ(gi)=2if i is odd,3if i is even,σ(fn)=σ(gn)=5,σ(fn1)=σ(gn1)=1,σ(fn2)=σ(gn2)=5,σ(fn3)=σ(gn3)=1,σ(fn4)=σ(gn4)=2,σ(fn5)=σ(gn5)=4.
    Therefore, σ is a proper edge-coloring. It remains to show that σ is an AVD proper edge-coloring. We compare the sets of colors of adjacent vertices of the same degree.

    The induced vertex-color sets are as follows:

    Sσ(x1)=Sσ(x1)={1,2,4,5};for i{2,3,,n6},Sσ(xi)=Sσ(xi)={1,2,3,4}if i2 mod 3,{2,3,4,5}if i0 mod 3,{1,2,3,5}if i1 mod 3,Sσ(xn)=Sσ(xn)={1,3,4,5},Sσ(xn1)=Sσ(xn1)={1,2,3,5},Sσ(xn2)=Sσ(xn2)={1,2,4,5},Sσ(xn3)=Sσ(xn3)={1,2,3,4},Sσ(xn4)=Sσ(xn4)={2,3,4,5},Sσ(xn5)=Sσ(xn5)={1,2,4,5}.
    Observe that σ is an AVD proper edge-coloring of D2(Cn). Hence χas(D2(Cn))=5.

    Case 4. For n2 mod 6,

    for i{1,2,,n6},σ(ei)=σ(hi)=1if i1 mod 3,4if i2 mod 3,5if i0 mod 3,σ(en)=σ(hn)=2,σ(en1)=σ(hn1)=4,σ(f1)=σ(g1)=5;for i{2,3,,n2},σ(fi)=σ(gi)=2if i is odd,3if i is even,σ(fn)=σ(gn)=3,σ(fn1)=σ(gn1)=1.
    Therefore, σ is a proper edge-coloring. It remains to show that σ is an AVD proper edge-coloring. We compare the sets of colors of adjacent vertices of the same degree.

    The induced vertex-color sets are as follows:

    Sσ(x1)=Sσ(x1)={1,2,3,5},Sσ(x2)=Sσ(x2)={1,3,4,5};for i{3,4,,n2},Sσ(xi)=Sσ(xi)={2,3,4,5}if i0 mod 3,{1,2,3,5}if i1 mod 3,{1,2,3,4}if i2 mod 3,Sσ(xn)=Sσ(xn)={1,2,3,4},Sσ(xn1)=Sσ(xn1)={1,3,4,5}.
    Observe that σ is an AVD proper edge-coloring of D2(Cn). Hence χas(D2(Cn))=5.

    Case 5. For n4 mod 6,

    for i{1,2,,n2},σ(ei)=σ(hi)=1if i1 mod 3,4if i2 mod 3,5if i0 mod 3,σ(en)=σ(hn)=4,σ(en1)=σ(hn1)=1,σ(f1)=σ(g1)=5;for i{2,3,,n3},σ(fi)=σ(gi)=2if i is odd,3if i is even,σ(fn)=σ(gn)=2,σ(fn1)=σ(gn1)=3,σ(fn2)=σ(gn2)=5.
    Therefore, σ is a proper edge-coloring. It remains to show that σ is an AVD proper edge-coloring. We compare the sets of colors of adjacent vertices of the same degree.

    The induced vertex-color sets are as follows:

    Sσ(x1)=Sσ(x1)={1,2,4,5},Sσ(x2)=Sσ(x2)={1,3,4,5};for i{3,4,,n3},Sσ(xi)=Sσ(xi)={2,3,4,5}if i0 mod 3,{1,2,3,5}if i1 mod 3,{1,2,3,4}if i2 mod 3,Sσ(xn)=Sσ(xn)={1,2,3,4},Sσ(xn1)=Sσ(xn1)={1,3,4,5},Sσ(xn2)=Sσ(xn2)={1,2,4,5}.
    Observe that σ is an AVD proper edge-coloring of D2(Cn). Hence χas(D2(Cn))=5. □

    3. AVD Proper Edge-Chromatic Index of Triangular Grid Tn Graph

    In this section, the AVD proper edge-coloring of triangular grid Tn is discussed.

    The triangular grid graph Tn is the graph on vertices (i,j,k) with i,j and k being nonnegative integers summing to n such that the vertices are adjacent if the sum of absolute differences of the coordinates of two vertices is 2.10

    Theorem 3.1.

    χas(Tl)=5if l=3,6if l=4,7if l5.

    Proof. Let Tl, for l3, be the triangular grid with vertices of Tl on l levels as xji for i{1,2,,l}j{1,2,,l}.

    We define σ:E(T3){1,2,3,4,5} as follows: σ(x11x12)=2σ(x11x22)=3σ(x12x13)=4σ(x22x23)=4σ(x12x23)=5σ(x22x33)=5σ(x12x22)=1σ(x13x23)=2 and σ(x23x33)=3. Therefore, σ is a proper edge-coloring. The induced vertex-color sets are: Sσ(x11)={2,3},Sσ(x12)={1,2,4,5}Sσ(x22)={1,3,4,5},Sσ(x13)={2,4}Sσ(x23)={2,3,4,5} and Sσ(x33)={3,5}. Hence, σ is an AVD proper edge-coloring of Tl. By Observation 1.1χas(T3)5, and so χas(T3)=5. Hence χas(T3)=5. We define σ:E(T4){1,2,3,4,5,6} as follows: σ(x11x12)=2σ(x11x22)=3σ(x12x13)=4σ(x22x23)=4σ(x12x23)=5σ(x22x33)=5σ(x13x14)=σ(x23x24)=σ(x33x34)=2σ(x13x24)=σ(x23x34)=σ(x33x44)=3σ(x12x22)=1σ(x13x23)=1σ(x23x33)=6σ(x14x24)=4σ(x24x34)=5 and σ(x34x44)=6. Therefore, σ is a proper edge-coloring. The induced vertex-color sets are: Sσ(x11)={2,3},Sσ(x12)={1,2,4,5}Sσ(x22)={1,3,4,5}Sσ(x13)={1,2,3,4}Sσ(x23)={1,2,3,4,5,6}Sσ(x33)={2,3,5,6}Sσ(x14)={2,6}Sσ(x24)={2,3,4,6}Sσ(x34)={2,3,4,5} and Sσ(x44)={3,5} Therefore, σ is an AVD proper edge-coloring of Tl. As Δ(χas(T4))=6, by Observation 1.2χas(T4)=6.

    For l5, since Δ(Tl)=6, by Observation 1.1χas(Tl)7. To show χas(Tl)7, we define σ:E(Tl){1,2,3,4,5,6,7} as follows :

    σ(x12x22)=1,σ(x13x23)=1,σ(x23x33)=6.
    For i{4,5,6,,l1}j{1,2,3,,i1},
    for i1 mod 3,σ(xjixj+1i)=1if j1 mod 3,7if j2 mod 3,6if j0 mod 3;for i2 mod 3,σ(xjixj+1i)=7if j1 mod 3,6if j2 mod 3,1if j0 mod 3;for i0 mod 3,σ(xjixj+1i)=6if j1 mod 3,1if j2 mod 3,7if j0 mod 3.
    If l5 mod 6l1 mod 6 and l3 mod 6,
    for i{1,3,5,,l2},σ(xjixji+1)=2if j{1,2,,i};for i{1,3,5,,l2},σ(xjixj+1i+1)=3if j{1,2,,i};for i{2,4,6,,l1},σ(xjixji+1)=4if j{1,2,,i};for i{2,4,6,,l1},σ(xjixj+1i+1)=5if j{1,2,,i}.
    If l0 mod 6l2 mod 6 and l4 mod 6,
    for i{1,3,5,,l1},σ(xjixji+1)=2if j{1,2,,i};for i{1,3,5,,l1},σ(xjixj+1i+1)=3if j{1,2,,i};for i{2,4,6,,l2},σ(xjixji+1)=4if j{1,2,,i};for i{2,4,6,,l2},σ(xjixj+1i+1)=5if j{1,2,,i}.
    For j{1,2,3,,l1}
    for l5 mod 6,l1 mod 6andl3 mod 6,σ(xjlxj+1l)=2if j1 mod 3,3if j2 mod 3,6if j0 mod 3;for l0 mod 6,l2 mod 6andl4 mod 6,σ(xjlxj+1l)=4if j1 mod 3,5if j2 mod 3,6if j0 mod 3.
    Therefore, σ is a proper edge-coloring. It remains to show that σ is an AVD proper edge-coloring. We compare the sets of colors of adjacent vertices of the same degree.

    The induced vertex-color sets are as follows:

    Sσ(x11)={2,3},Sσ(x12)={1,2,4,5},Sσ(x22)={1,3,4,5},Sσ(x13)={1,2,3,4},Sσ(x23)={1,2,3,4,5,6},Sσ(x33)={2,3,5,6},Sσ(x14)={1,2,4,5},Sσ(x24)={1,2,3,4,5,7},Sσ(x34)={2,3,4,5,6,7},Sσ(x44)={3,4,5,6}.
    For i{5,6,,l1}j{2,3,,i1},
    for i5 mod 6,Sσ(x1i)={2,3,4,7},Sσ(xji)={2,3,4,5,6,7}if j2 mod 3,{1,2,3,4,5,6}if j0 mod 3,{1,2,3,4,5,7}if j1 mod 3,Sσ(xii)={2,3,5,7};for i0 mod 6,Sσ(x1i)={2,4,5,6},Sσ(xji)={1,2,3,4,5,6}if j2 mod 3,{1,2,3,4,5,7}if j0 mod 3,{2,3,4,5,6,7}if j1 mod 3,Sσ(xii)={1,3,4,5};for i1 mod 6,Sσ(x1i)={1,2,3,4},Sσ(xji)={1,2,3,4,5,7}if j2 mod 3,{2,3,4,5,6,7}if j0 mod 3,{1,2,3,4,5,6}if j1 mod 3,Sσ(xii)={2,3,5,6};for i2 mod 6,Sσ(x1i)={2,4,5,7},Sσ(xji)={2,3,4,5,6,7}if j2 mod 3,{1,2,3,4,5,6}if j0 mod 3,{1,2,3,4,5,7}if j1 mod 3,Sσ(xii)={3,4,5,7};for i3 mod 6,Sσ(x1i)={2,3,4,6},Sσ(xji)={1,2,3,4,5,6}if j2 mod 3,{1,2,3,4,5,7}if j0 mod 3,{2,3,4,5,6,7}if j1 mod 3,Sσ(xii)={1,2,3,5};for i4 mod 6,Sσ(x1i)={1,2,4,5},Sσ(xji)={1,2,3,4,5,7}if j2 mod 3,{2,3,4,5,6,7}if j0 mod 3,{1,2,3,4,5,6}if j1 mod 3,Sσ(xii)={3,4,5,6}.
    For j{2,3,,l1},
    for l5 mod 6,Sσ(x1l)={2,4},Sσ(xjl)={2,3,4,5}if j2 mod 3,{3,4,5,6}if j0 mod 3,{2,4,5,6}if j1 mod 3,Sσ(xll)={2,5};for l0 mod 6,Sσ(x1l)={2,4},Sσ(xjl)={2,3,4,5}if j2 mod 3,{2,3,5,6}if j0 mod 3,{2,3,4,6}if j1 mod 3,Sσ(xll)={3,5};for l1 mod 6,Sσ(x1l)={2,4},Sσ(xjl)={2,3,4,5}if j2 mod 3,{3,4,5,6}if j0 mod 3,{2,4,5,6}if j1 mod 3,Sσ(xll)={5,6};for l2 mod 6,Sσ(x1l)={2,4},Sσ(xjl)={2,3,4,5}if j2 mod 3,{2,3,5,6}if j0 mod 3,{2,3,4,6}if j1 mod 3,Sσ(xll)={3,4};for l3 mod 6,Sσ(x1l)={2,4},Sσ(xjl)={2,3,4,5}if j2 mod 3,{3,4,5,6}if j0 mod 3,{2,4,5,6}if j1 mod 3,Sσ(xll)={3,5};for l4 mod 6,Sσ(x1l)={2,4},Sσ(xjl)={2,3,4,5}if j2 mod 3,{2,3,5,6}if j0 mod 3,{2,3,4,6}if j1 mod 3,Sσ(xll)={3,6}.
    Observe that σ is an AVD proper edge-coloring of Tl. Hence χas(Tl)=7. □

    4. AVD Proper Edge-Chromatic Index of H-Graph

    In this section, AVD proper edge-coloring of H-graph will be discussed.11

    The H-graph H(r)r2, is the 3-regular graph of order 6r, with the vertex set

    V(H(r))={xi,yi,zi:0i2r1}
    and edge set (subscripts are taken modulo 2r)
    E(H(r))={(xi,xi+1),(zi,zi+1),(xi,yi),(yi,zi):0i2r1}{(y2i,y2i+1):0ir1}.

    Proposition 4.1. χas(H(2))=4.

    Proof. We define σ:E(H(2)){1,2,3,4} as follows:

    σ(xixi+1)=c(zizi+1)=1if i=1,3,3if i=2,σ(x1x4)=c(z1z4)=2,σ(yiyi+1)=1if i=1,3,σ(xiyi)=4if i=1,3,2if i=2,3if i=4,σ(yizi)=3if i=1,4if i=2,4,2if i=3.
    Therefore, σ is a proper edge-coloring. It remains to show that σ is an AVD proper edge-coloring. We compare the sets of colors of adjacent vertices of the same degree.

    The induced vertex-color sets are as follows:

    Sσ(x1)={1,2,4},Sσ(x2)={1,2,3},Sσ(x3)={1,3,4},Sσ(x4)={1,2,3},Sσ(y1)={1,3,4}=Sσ(y4),Sσ(y2)={1,2,4}=Sσ(y3),Sσ(z1)={1,2,3},Sσ(z2)={1,3,4},Sσ(z3)={1,2,3},Sσ(z4)={1,2,4}.
    Observe that σ is an AVD proper edge-coloring of H(2). Hence χas(H(2))=4. □

    Proposition 4.2. χas(H(3))=4.

    Proof. We define σ:E(H(3)){1,2,3,4} as follows:

    σ(xixi+1)=c(zizi+1)=2if i=1,4,1if i=2,5,4if i=3,σ(x1x6)=c(z1z6)=4,σ(yiyi+1)=2if i=1,4if i=3,1if i=5,σ(xiyi)=1if i=1,3if i=2,4,6,2if i=3,4if i=5,σ(yizi)=3if i=1,3,5,4if i=2,1if i=3,2if i=5.
    Therefore, σ is a proper edge-coloring. It remains to show that σ is an AVD proper edge-coloring. We compare the sets of colors of adjacent vertices of the same degree.

    The induced vertex-color sets are as follows:

    Sσ(x1)=Sσ(x3)=Sσ(x5)={1,2,4},Sσ(x2)={1,2,3},Sσ(x4)={2,3,4},Sσ(x4)={1,3,4},Sσ(y1)={1,2,3}=Sσ(y6),Sσ(y2)={2,3,4}=Sσ(y3),Sσ(y4)={1,3,4}=Sσ(y5),Sσ(z1)={2,3,4},Sσ(z2)=Sσ(z4)=Sσ(z6)={1,2,4},Sσ(z3)={1,3,4},Sσ(z5)={1,2,3}.
    Observe that σ is an AVD proper edge-coloring of H(3). Hence χas(H(3))=4. □

    Theorem 4.1. χas(H(r))=4 for r4.

    Proof. Since Δ(H(r))=3, by Observation 1.1χas(H(r))4. To show χas(H(r))4, we consider two cases and in each case, we define σ:E(H(r)){1,2,3,4} as follows:

    Case 1. If r is even,

    σ(x1x2)=1=c(z1z2);for i{2,3,,2r1},σ(xixi+1)=c(zizi+1)=3if i2 mod 4,1if i3,1 mod 4,2if i0 mod 4,σ(x1x2r)=c(z1z2r)=2,σ(yiyi+1)=1if i1,3 mod 4,σ(xiyi)=4if i1,3 mod 4,2if i2 mod 4,3if i0 mod 4,σ(yizi)=3if i1 mod 4,4if i2,0 mod 4,2if i3 mod 4.
    Therefore, σ is a proper edge-coloring. It remains to show that σ is an AVD proper edge-coloring. We compare the sets of colors of adjacent vertices of the same degree.

    The induced vertex-color sets are as follows:

    for i{1,2,,2r},Sσ(xi)={1,2,3}if i2,0 mod 4,{1,3,4}if i3 mod 4,{1,2,4}if i1 mod 4;for i{1,2,,2r1},Sσ(yi)={1,3,4}if i1,0 mod 4,{1,2,4}if i2,3 mod 4;for i{2,3,,2r},Sσ(zi)={1,2,3}if i1,3 mod 4,{1,3,4}if i2 mod 4,{1,2,4}if i0 mod 4.
    Observe that σ is an AVD proper edge-coloring of H(r). Hence χas(H(r))=4.

    Case 2. If r is odd,

    σ(x1x2)=2=σ(z1z2);for i{2,3,,2r2},σ(xixi+1)=c(zizi+1)=1if i2 mod 4,4if i3,1 mod 4,2if i0 mod 4,σ(x2r1x2r)=1=σ(z2r1z2r),σ(x1x2r)=σ(z1z2r)=4,σ(y1y2)=2,σ(y2r1y2r)=1;for i{3,5,,2r1},σ(yiyi+1)=4if i3,1 mod 4,σ(xiyi)=1if i1 mod 4,3if i2,0 mod 4,2if i3 mod 4,σ(x2r1y2r1)=4,σ(x2ry2r)=3,σ(y1z1)=3,σ(y2z2)=4;for i{3,4,,2r1},σ(yizi)=3if i3,1 mod 4,1if i0 mod 4,2if i2 mod 4,σ(y2rz2r)=2.
    Therefore, σ is a proper edge-coloring. It remains to show that σ is an AVD proper edge-coloring. We compare the sets of colors of adjacent vertices of the same degree.

    The induced vertex-color sets are as follows:

    Sσ(x1)={1,2,4},Sσ(x2)={1,2,3};for i{2,3,,2r1},Sσ(xi)={1,3,4}if i2 mod 4,{1,2,4}if i3,1 mod 4,{2,3,4}if i0 mod 4,Sσ(x2r)={1,3,4},Sσ(y1)={1,2,3};for i{2,4,,2r2},Sσ(yi)={2,3,4}if i2 mod 4,{1,3,4}if i0 mod 4;for i{3,5,,2r1},Sσ(yi)={2,3,4}if i3 mod 4,{1,3,4}if i1 mod 4,Sσ(y2r)={1,2,3},Sσ(z1)={2,3,4},Sσ(z2)={1,2,4};for i{3,4,,2r1},Sσ(zi)={1,3,4}if i3 mod 4,{1,2,4}if i0,2 mod 4,{2,3,4}if i1 mod 4,Sσ(z2r1)={1,2,3},Sσ(z2r)={1,2,4}.
    Observe that σ is an AVD proper edge-coloring of H(r). Hence χas(H(r))=4. □

    4.1. Generalized H-graphs

    We now consider a natural extension of H-graphs. For every integer r2, the generalized H-graph Hl(r) with l levels, l1, is the 3-regular graph of order 2r(l+2), with the vertex set

    V(Hl(r))={xji:0il+1,0j2r1}
    and edge set (subscripts are taken modulo 2r)
    E(Hl(r))={(xj0,xj+10),(xjl+1,xj+1l+1):0j2r1}{(x2jix2j+1i):1il,0jr1}{(xji,xji+1):0il,0j2r1}.

    Theorem 4.2. χas(Hl(r))=5 for r3 and l2.

    Proof. We define σ:E(Hl(r)){1,2,3,4,5} as follows:

    for j{1,2,,2r1},σ(xj0xj+10)=1if j is odd,3if j is even,σ(x10x2r0)=3;for i{1,2,,l},σ(xjjxj+1j)=1if j is odd.
    If σ(xj0xj1)={4if j is odd2if j is even, for i{1,2,,l},
    for i1 mod 3,σ(xjixji+1)=2if j is odd,5if j is even;for i2 mod 3,σ(xjixji+1)=5if j is odd,3if j is even;for i0 mod 3,σ(xjixji+1)=3if j is odd,2if j is even.

    For j{1,2,,2r1},

    σ(xjl+1xj+1l+1)=1if j is odd,4if j is even,σ(x1l+1x2rl+1)=4.
    Therefore, σ is a proper edge-coloring. It remains to show that σ is an AVD proper edge-coloring. We compare the sets of colors of adjacent vertices of the same degree.

    The induced vertex-color sets are as follows :

    for j{1,2,,2r},Sσ(xj0)={1,3,4}if j is odd,{1,2,3}if j is even.
    For i{1,2,,l}j{1,2,,2r},
    for i=1,Sσ(xji)={1,2,4}if j is odd,{1,2,5}if j is even;for i2 mod 3,Sσ(xji)={1,2,5}if j is odd,{1,3,5}if j is even;for i0 mod 3,Sσ(xji)={1,3,5}if j is odd,{1,2,3}if j is even;for i1 mod 3,Sσ(xji)={1,2,3}if j is odd,{1,2,5}if j is even.
    For j{1,2,,2r},
    Sσ(xjl+1)={1,4,5}if j is odd,{1,3,4}if j is even.
    Observe that σ is an AVD proper edge-coloring of Hl(r). Hence χas(Hl(r))=5. □

    5. Conclusion

    In this paper, I investigate the AVD proper edge-chromatic indices of the middle, splitting and shadow graphs of path and cycle, and also I investigated the triangular grid TnH-graph and generalized H-graph. To derive similar results for other graph families is an open area of research.

    Acknowledgments

    The author expresses his sincere thanks to the referee for his/her careful reading and suggestions that helped to improve this paper.