World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Modern Foundations of Quantum Optics cover

This textbook offers a comprehensive and up-to-date overview of the basic ideas in modern quantum optics, beginning with a review of the whole of optics, and culminating in the quantum description of light. The book emphasizes the phenomenon of interference as the key to understanding the behavior of light, and discusses distinctions between the classical and quantum nature of light. Laser operation is reviewed at great length and many applications are covered, such as laser cooling, Bose condensation and the basics of quantum information and teleportation. Quantum mechanics is introduced in detail using the Dirac notation, which is explained from first principles. In addition, a number of non-standard topics are covered such as the impossibility of a light-based Maxwell's demon, the derivation of the Second Law of thermodynamics from the first-order time-dependent quantum perturbation theory, and the concept of Berry's phase. The book emphasizes the physical basics much more than the formal mathematical side, and is ideal for a first, yet in-depth, introduction to the subject. Five sets of problems with solutions are included to further aid understanding of the subject.

Sample Chapter(s)
Chapter 1: From Geometry to the Quantum (409 KB)

Request Inspection Copy


Contents:
  • From Geometry to the Quantum
  • Introduction to Lasers
  • Properties of Light: Blackbody Radiation
  • Interaction of Light with Matter I
  • Basic Optical Processes — Still Classical
  • More Detailed Principles of Laser
  • Interactions of Light with Matter II
  • Two Level Systems
  • Field Quantization
  • Interaction of Light with Matter III
  • Some Recent Applications of Quantum Optics
  • Closing Lines
  • Problems and Solutions

Readership: Physics and chemistry undergraduates (3rd and 4th year, as well as advanced 2nd year) and first year postgraduate students. Ideal as a textbook for a one-term long course on quantum optics.