World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A NEW APPROACH FOR IDENTIFYING SLEEP APNEA SYNDROME USING WAVELET TRANSFORM AND NEURAL NETWORKS

    https://doi.org/10.4015/S1016237206000233Cited by:68 (Source: Crossref)

    This paper describes a new technique to classify and analyze the electroencephalogram (EEG) signal and recognize the EEG signal characteristics of Sleep Apnea Syndrome (SAS) by using wavelet transforms and an artificial neural network (ANN). The EEG signals are separated into Delta, Theta, Alpha, and Beta spectral components by using multi-resolution wavelet transforms. These spectral components are applied to the inputs of the artificial neural network. We treated the wavelet coefficient as the kind of the training input of artificial neural network, might result in 6 groups of wavelet coefficients per second signal by way of characteristic part processing technique of the artificial neural network designed by our group, we carried out the task of training and recognition of SAS symptoms. Then the neural network was configured to give three outputs to signify the SAS situation of the patient. The recognition threshold for all test signals turned out to have a sensitivity level of approximately 69.64% and a specificity value of approximately 44.44%. In neurology clinics, this study offers a clinical reference value for identifying SAS, and could reduce diagnosis time and improve medical service efficiency.