NUMERICAL STUDY OF MUCOUS LAYER EFFECTS ON NASAL AIRFLOW
Abstract
The aim of this study is to visualize and analyze the mucous layer effects towards the nasal airflow. Mucous layer had been neglected in previous works as it is considered a very thin layer along the nasal passageway. This paper discussed the effects in nasal airflow caused by the micrometer changes of the mucous layer thickness along the nasal passageway. Differences in maximum velocities caused by the mucous layer and visualization of the nasal airflow were studied. Computational fluid dynamics (CFD) was used to study three-dimensional nasal cavity of an adult Malaysian female. Six different models with various thickness of mucous layer within the range of 5–50 μm were implemented in the analysis with mass flow rate of 7.5 and 20 L/min. Mucous layer is assumed to be uniform, solid, and also stationary for this study. The results from all the six models were compared with the model with non-mucous effects. Based on both laminar and turbulent airflow simulations, it is shown that the addition of mucous layer thickness in analysis increased the maximum velocities at the four cross sections along the nasal cavity.