Please login to be able to save your searches and receive alerts for new content matching your search criteria.
The numerical simulations of the flow in nasal airways were performed for two different clinical cases. The results comprised the distributions of scalars at five different sections and included contours of pressure, velocity magnitude, turbulent kinetic energy and vorticity magnitude. Simulations showed the air branching occurring at the inferior meatus is unaffected by the variations in the volumetric flow rate or the changes in the flow regime through the olfactory cleft. However, the contractions and the following rapid change in the cross-section of the nasopharynx preclude the upward penetration of the vacuum field set by the lungs during the inhalation process. As a result, considerably low velocities and significant cross-sectional nonuniformities are observed, which lead to the appearances of the secondary flow structures and strong unsteadiness. Increased interactions between the airflow and the walls of the nasal cavity resulted in an increase in the vorticity on the right middle meatus and upper inferior meatus. The vorticity was also very high in the nostrils, where the flow was not fully developed.
The aim of this study is to visualize and analyze the mucous layer effects towards the nasal airflow. Mucous layer had been neglected in previous works as it is considered a very thin layer along the nasal passageway. This paper discussed the effects in nasal airflow caused by the micrometer changes of the mucous layer thickness along the nasal passageway. Differences in maximum velocities caused by the mucous layer and visualization of the nasal airflow were studied. Computational fluid dynamics (CFD) was used to study three-dimensional nasal cavity of an adult Malaysian female. Six different models with various thickness of mucous layer within the range of 5–50 μm were implemented in the analysis with mass flow rate of 7.5 and 20 L/min. Mucous layer is assumed to be uniform, solid, and also stationary for this study. The results from all the six models were compared with the model with non-mucous effects. Based on both laminar and turbulent airflow simulations, it is shown that the addition of mucous layer thickness in analysis increased the maximum velocities at the four cross sections along the nasal cavity.