World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Generating new drug repurposing hypotheses using disease-specific hypergraphs

    https://doi.org/10.1142/9789811286421_0021Cited by:1 (Source: Crossref)
    Abstract:

    The drug development pipeline for a new compound can last 10-20 years and cost over $10 billion. Drug repurposing offers a more time- and cost-effective alternative. Computational approaches based on network graph representations, comprising a mixture of disease nodes and their interactions, have recently yielded new drug repurposing hypotheses, including suitable candidates for COVID-19. However, these interactomes remain aggregate by design and often lack disease specificity. This dilution of information may affect the relevance of drug node embeddings to a particular disease, the resulting drug-disease and drug-drug similarity scores, and therefore our ability to identify new targets or drug synergies. To address this problem, we propose constructing and learning disease-specific hypergraphs in which hyperedges encode biological pathways of various lengths. We use a modified node2vec algorithm to generate pathway embeddings. We evaluate our hypergraph’s ability to find repurposing targets for an incurable but prevalent disease, Alzheimer’s disease (AD), and compare our ranked-ordered recommendations to those derived from a state-of-the-art knowledge graph, the multiscale interactome. Using our method, we successfully identified 7 promising repurposing candidates for AD that were ranked as unlikely repurposing targets by the multiscale interactome but for which the existing literature provides supporting evidence. Additionally, our drug repositioning suggestions are accompanied by explanations, eliciting plausible biological pathways. In the future, we plan on scaling our proposed method to 800+ diseases, combining single-disease hypergraphs into multi-disease hypergraphs to account for subpopulations with risk factors or encode a given patient’s comorbidities to formulate personalized repurposing recommendations.

    Supplementary materials and code: https://github.com/ayujain04/psb_supplement