World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
https://doi.org/10.1142/9789812794185_0027Cited by:0 (Source: Crossref)
Abstract:

In the early years of the last century the discreteness of matter, of electric charge, and of mechanical action became firmly established, and slowly some of the more subtle implications of the interplay of these three were worked out. Dirac showed that magnetic monopoles also had to be quantized, the importance of dislocations in solids was shown, and the quantization of circulation in neutral superfluids and of magnetic flux in superconductors was predicted and demonstrated. Such topological defects can be a sign of a symmetry broken by a phase transition, or, as Onsager suggested in his first exposition of quantized circulation, can themselves drive a phase transition. I discuss circulation in superfluids, flux in superconductors and Hall conductance in inversion layers as examples of such quantum numbers. I show why there is a topological quantum number, and ask how the mathematical quantum number is related to measurable quantities. Recently there has been interest in whether the robustness of such topological defects make them suitable for quantum manipulation.

Note from Publisher: This article contains the abstract only.