World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

NUCLEONS AS CHIRAL SOLITONS

    https://doi.org/10.1142/9789812810458_0014Cited by:3 (Source: Crossref)
    Abstract:

    In the limit of large number of colors Nc the nucleon consisting of Nc quarks is heavy, and one can treat it semiclassically, like the large-Z Thomas–Fermi atom. The role of the semiclassical field binding the quarks in the nucleon is played by the pion or chiral field; its saddle-point distribution inside the nucleon is called the chiral soliton. The old Skyrme model for this soliton is an over-simplification. One can do far better by exploiting a realistic and theoretically-motivated effective chiral lagrangian presented in this paper. As a result one gets not only the static characteristics of the nucleon in a fair accordance with the experiment (such as masses, magnetic moments and formfactors) but also much more detailed dynamic characteristics like numerous parton distributions. We review the foundations of the Chiral Quark-Soliton Model of the nucleon as well as its recent applications to parton distributions, including the recently introduced ‘skewed’ distributions, and to the nucleon wave function on the light cone.