World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Spring Sale: Get 35% off with a min. purchase of 2 titles. Use code SPRING35. Valid till 31st Mar 2025.

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
https://doi.org/10.1142/9789814434393_0002Cited by:0 (Source: Crossref)
Abstract:

In the preceding chapter, networks were characterized by their port behaviors. Fundamental to the concept of a port is the assumption that the instantaneous current entering one terminal of the port is always equal to the instantaneous current leaving the other terminal of the port. However, we recognize that upon the interconnection of networks, this port constraint may be violated. Thus, it is sometimes desirable and more advantageous to consider n-terminal networks, as depicted in Fig. 2.1.

In this chapter, we discuss a useful description of the external behavior of a multiterminal network in terms of the indefinite-admittance matrix and demonstrate how it can be employed effectively for the computation of network functions. Specifically, we derive formulas expressing the network functions in terms of the first-order and the second-order cofactors of the elements of the indefiniteadmittance matrix. The significance of this approach is that the indefiniteadmittance matrix can usually be written down directly from the network by inspection.

Since in the remainder of this book we deal exclusively with linear, lumped, and time-invariant networks, the adjectives linear, lumped, and time-invariant are omitted in the discussion unless they are used for emphasis.