World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Spring Sale: Get 35% off with a min. purchase of 2 titles. Use code SPRING35. Valid till 31st Mar 2025.

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

The method of fitting a non-linear function and its uncertainty band to data of measured points

    https://doi.org/10.1142/9789819800674_0027Cited by:1 (Source: Crossref)
    Abstract:

    This paper presents a proposed new method of determining parameters and uncertainty bands of a specific non-linear function fitted to given measured data of examined points. One or both of the variables of this non-linear function are changed so as to linearize it. Using the linear regression method, fined are the most favorable parameters of this straight line for its adjustment to the measured values of the coordinates of points tested according to the weighted total mean square WTLS criterion. Their autocorrelation and cross-correlation coefficients as well as uncertainties estimated according to the rules of the GUM guide [1] are considered. The parameters and the uncertainty band of the non-linear function result from the parameters of this straight line and its uncertainty band. Numerical examples of determining the parameters and uncertainty bands for the branch of a 2nd degree parabola (two methods) and for the complex exponential function are given.