World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Higher lattices, discrete two-dimensional holonomy and topological phases in (3+13+1)D with higher gauge symmetry

    https://doi.org/10.1142/S0129055X20500117Cited by:16 (Source: Crossref)

    Higher gauge theory is a higher order version of gauge theory that makes possible the definition of 2-dimensional holonomy along surfaces embedded in a manifold where a gauge 2-connection is present. In this paper, we study Hamiltonian models for discrete higher gauge theory on a lattice decomposition of a manifold. We show that a construction for higher lattice gauge theory is well-defined, including in particular a Hamiltonian for topological phases of matter in 3+13+1 dimensions. Our construction builds upon the Kitaev quantum double model, replacing the finite gauge connection with a finite gauge 2-group 2-connection. Our Hamiltonian higher lattice gauge theory model is defined on spatial manifolds of arbitrary dimension presented by slightly combinatorialized CW-decompositions (2-lattice decompositions), whose 1-cells and 2-cells carry discrete 1-dimensional and 2-dimensional holonomy data. We prove that the ground-state degeneracy of Hamiltonian higher lattice gauge theory is a topological invariant of manifolds, coinciding with the number of homotopy classes of maps from the manifold to the classifying space of the underlying gauge 2-group.

    The operators of our Hamiltonian model are closely related to discrete 2-dimensional holonomy operators for discretized 2-connections on manifolds with a 2-lattice decomposition. We therefore address the definition of discrete 2-dimensional holonomy for surfaces embedded in 2-lattices. Several results concerning the well-definedness of discrete 2-dimensional holonomy, and its construction in a combinatorial and algebraic topological setting are presented.

    AMSC: 81T45, 53C29, 57R56, 81R05, 82B20