World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Special Issue on 23rd Connecticut Microelectronics and Optoelectronics Consortium Symposium (CMOC-2014) April 9, Connecticut, USA; Edited by F. Jain, C. Broadbridge and H. TangNo Access

ZnMgO/ZnO Core-Shell Structures for Gas Sensing

    https://doi.org/10.1142/S012915641550010XCited by:1 (Source: Crossref)

    Co-axial Zn1−xMgxO core, ZnO shell structures were grown using metal organic chemical vapor deposition (MOCVD), with Mg mole fractions of 2, 5 and 10%. The co-axial core shell structure, with the respective Mg concentration is verified using scanning electron microscope (SEM), transmission electron microscope (TEM) and energy dispersive spectroscopy (EDS). The response times (ṟise time and fall time) of the devices, after being exposed to methanol, varied with Mg mole fraction at the core, r-0.17s and, f-0.37s & f-0.48s for 2% Mg, r-0.81s and, f-5.98s & f-0.89s for 5% Mg and r-0.33s and f-0.13s for 10% Mg. The sensitivity of the devices at room temperature increased with the increment of Mg mole fraction at the core, 25%, 48% and 50% with Mg concentration of 0.02, 0.05 and 0.1, respectively, under high concentration of methanol. The estimated activation energy, corresponds to doubly charged oxygen vacancy (Vo2+).

    Remember to check out the Most Cited Articles!

    Check out these Notable Titles in Antennas