World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Behavioral Modeling of the Pinched Hysteresis Loop of a Pt/TiO2/Pt Memristor

    https://doi.org/10.1142/S0129156423500088Cited by:1 (Source: Crossref)
    This article is part of the issue:

    The fourth fundamental circuit element, the memristor, has become a promising candidate to substantially improve the energy and area efficiencies of circuits as traditional complementary metal-oxide-semiconductor (CMOS) technology is approaching its physical limit. However, a mathematical representation of the experimentally obtained current-voltage characteristic of the memristor is necessary to develop and test memristor-based circuitry in electrical design simulators. Here we have developed a behavioral model for the I-V trace of a Pt/TiO2/Pt memristor that can relate the fitting equations with the physical processes associated with the device in response to applied electrical excitation. Multiple conduction mechanisms are involved in memristor that depend upon its latest state. Therefore, the I-V has distinct segments that altogether form a hysteresis loop pinched at the center. In accordance with the predominant conduction mechanisms at each segment, our model defines the form of the equations. The behavioral model can adequately represent the experimental I-V retrieved from existing work.

    Remember to check out the Most Cited Articles!

    Check out these Notable Titles in Antennas