Processing math: 100%
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

AN SL2(ℂ) ALGEBRO-GEOMETRIC INVARIANT OF KNOTS

    https://doi.org/10.1142/S0129167X11007240Cited by:2 (Source: Crossref)

    In this paper, we define a new algebro-geometric invariant of three-manifolds resulting from Dehn surgery along a hyperbolic knot complement in S3. We establish a Casson-type invariant for these three-manifolds. In the last section, we explicitly calculate the character variety of the figure-eight knot and discuss some applications, as well as the computation of our new invariants for some three-manifolds resulting from Dehn surgery along the figure-eight knot.

    AMSC: 57M25, 57M27, 14H50