World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A qualitative study of a nanotube model using an iterative Taylor method

    https://doi.org/10.1142/S012918311750036XCited by:3 (Source: Crossref)

    Physical properties of graphene nanotubes may strongly depend on external fields. In a recent paper V. Jakubský, S. Kuru, J. Negro, J. Phys. A: Math. Theor.47, 115307 (2014), the authors have studied a model of carbon nanotubes under the presence of an external magnetic field, chosen for some symmetry properties. The model admits an exact solution, provided that the value of a parameter, here denoted as kzkz, be equal to zero. This parameter is the eigenvalue of the component of the momentum in the direction of the nanotube axis. However, it seems that this parameter cannot be discarded for physical reasons. The choice of nontrivial values for this parameter produces an equation of motion for electrons in the nanotube (a Dirac–Weyl equation), which cannot be exactly solvable. Then, we proposed some iterative approximate methods to solve this equation and obtaining its eigenvalues. Some tests have shown that an iterative Taylor method is more efficient than some others we have used. For kz0kz0, we have found that, excluding the minimal energy eigenvalue, the lowest energy values obtained for kz=0kz=0 split into two different ones and, therefore, producing gaps in the energy spectrum.

    PACS Nos.: 02.60.x, 61.46.Np
    You currently do not have access to the full text article.

    Recommend the journal to your library today!