World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Resolution Effects in Dissipative Particle Dynamics Simulations

    https://doi.org/10.1142/S0129183198001187Cited by:25 (Source: Crossref)

    Dissipative Particle Dynamics (DPD) simulations were performed to investigate resolution or "coarse graining" effects on the simulation results. Fluid flow through a periodic array of spheres has been studied as a model for fluid filtration into a porous medium. In our model system, it appears that quantitatively correct results for the dimensionless drag can be obtained for relatively small system sizes. For higher solid volume fractions, it is necessary to increase the system size to avoid finite size and resolution effects. Simulations of colloidal spheres suspended in a DPD fluid show effective attraction between the large colloid particles, causing depletion aggregation. This effect may be expected as a consequence of the coarse-grained nature of the DPD fluid. By imposing a steady shear rate the aggregation can be suppressed. The results show that for dilute suspensions, the Brownian noise in the particle interactions causes an effective colloid polydispersity, which suppresses aggregation effects.

    This paper was presented at the 7th Int. Conf. on the Discrete Simulation of Fluids held at the University of Oxford, 14–18 July 1998.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!