Processing math: 100%
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Rhus verniciflua and Eucommia ulmoides Protects Against High-Fat Diet-Induced Hepatic Steatosis by Enhancing Anti-Oxidation and AMPK Activation

    https://doi.org/10.1142/S0192415X19500642Cited by:9 (Source: Crossref)

    Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disorder associated with features of metabolic syndrome and oxidative stress. We examined the mechanism by which the combined extracts of Rhus verniciflua and Eucommia ulmoides extracts (ILF-RE) regulate hepatic dyslipidemia in an established NAFLD model, high-fat diet (HFD)-induced lipid dysmetabolism in rats. ILF-RE attenuated alanine aminotransferase (ALT) by 1.5% (p<0.05), aspartate aminotransferase (AST) by 1.5% (p<0.05), triglycerides by 1.5% (p<0.05), cholesterol by 2.0% (p<0.05), and lipid peroxidation by 1.5% (p<0.05) in the NAFLD model. ILF-RE, recently shown to have anti-oxidant properties, also inhibited hepatic ROS accumulation by 1.68% (p<0.05) and regulated ER-redox imbalance, a key phenomenon of ER stress. Due to nutrient overload stress-associated protein folding, ER stress and downstream SREBP-lipogenic transcription signaling were highly activated, and the mTORC1-AMPK axis was also disturbed, leading to hepatic steatosis. ILF-RE results in recovery from hepatic conditions induced by nutrient-based protein folding stress signaling and the ER stress-SREBP and AMPK-mTORC1-SREBP1 axes. Based on these results, ILF-RE is suggested to be a potential therapeutic strategy for hepatic steatosis and may represent a promising novel agent for the prevention and treatment of NAFLD.