As practice in folk medicine, Graptopetalum paraguayense E. Walther possesses several biological/pharmacological activities including hepatoprotective, anti-oxidant, and anti-inflammatory. We investigated the neuroprotective potential of Graptopetalum paraguayense E. Walther leaf extracts on inflammation-mediated ischemic brain injury. Water (GWE), 50% alcohol (GE50) extracts of Graptopetalum paraguayense E. Walther, and extracts obtained from further extraction of GE50 with ethyl acetate (GEE) were used. Oral administration of GEE, but not GWE or GE50, for 2 weeks protected animals against cerebral ischemia/reperfusion brain injury. The neuroprotective effect of GEE was accompanied by reductions in brain infarction, neurological deficits, caspase-3 activity, malondialdehyde content, microglia activation, and inducible nitric oxide synthase (iNOS) expression. Since microglia-mediated inflammation plays critical roles in ischemic brain injury, anti-inflammatory potential of Graptopetalum paraguayense E. Walther leaf extracts was further investigated on lipopolysaccharide (LPS)/interferon-γ (IFN-γ-activated BV-2 microglial cells. GEE decreased H2O2- and LPS/IFN-γ-induced free radical generation and LPS/IFN-γ-induced iNOS expression. Mechanistic study revealed that the neuroactive effects of GEE were markedly associated with anti-oxidative potential, activation of serine/threonine and tyrosine phosphatases, and down-regulation of extracellular signal-regulated kinase, c-Jun N-terminal kinase, p38, Akt, Src, Janus kinase-1, Tyk2, signal transducer and activator of transcription-1, and NF-κB and might be attributed to the presence of polyphenolic compounds such as gallic acid, genistin, daidzin, and quercetin. Together, our findings point out its potential therapeutic strategies that target microglia activation, oxidative stress, and iNOS expression to reduce ischemic brain injury and suggest that Graptopetalum paraguayense E. Walther leaf extracts represent a valuable source for the development of neuroprotective agents.
Proanthocyanidins (PAs) belong to the condensed tannin subfamily of natural flavonoids. Recent studies have shown that the main bioactive compounds of Pinus massoniana bark extract (PMBE) are PAs, especially the proanthocyanidins B series, which play important roles in cell cycle arrest, apoptosis induction and migration inhibition of cancer cells in vivo and in vitro. PA-Bs are mixtures of oligomers and polymers composed of flavan-3-ol, and the relationship between their structure and corresponding biomedical potentials is summarized in this paper. The hydroxyl at certain positions or the linkage between different carbon atoms of different rings determines or affects their anti-oxidant and free radical scavenging bioactivities. The degree of polymerization and the water solubility of the reaction system also influence their biomedical potential. Taken together, PMBE has a promising future in clinical drug development as a candidate anticancer drug and as a food additive to prevent tumorigenesis. We hope this review will encourage interested researchers to conduct further preclinical and clinical studies to evaluate the anticancer activities of PMBE, its active constituents and their derivatives.
Anti-oxidant refers to such a kind of endogenous or exogenous compound that is able to retard or even prohibit in vivo or in vitro oxidation with only small amount being used. The study of anti-oxidants starts nearly 30 years ago, and the research on this topic in China almost begins simultaneously with that in the world. Gratifyingly, contributions on anti-oxidants from China researchers have rapidly increased in the recent decade as anti-oxidants have become a hot topic in biochemistry, pharmacology, food science, chemistry as well as other related disciplines. Anti-oxidants provide a specific viewpoint for clarifying pharmacological effects of Chinese medicinal herbs. For example, as a traditional Chinese medicinal herb, Panax ginseng C. A. Meyer is found to be a natural anti-oxidant resource. Meanwhile, some signaling pathways such as nuclear factor-κκB (NF-κκB), nuclear factor erythroid 2 related factor 2 (Nrf2), and Kelch-like ECH associated protein 1 (Keap1) are regarded to play an important role in anti-oxidant responses. These findings provide a substantial basis for understanding the pharmacological behaviors of Chinese medicinal herbs in view of regulating the aforementioned signaling pathways. Moreover, inhibition of reactive oxygen species (ROS) by supplementation of anti-oxidant becomes a popularly accepted idea in keeping health and treating diseases. Isolations of antio-xidative ingredients from medicinal herbs and foods lead to set up a large range of anti-oxidative compound libraries, and intake of anti-oxidants from foods may be the most efficient way for supplementing exogenous anti-oxidants. On the other hand, designing anti-oxidants with novel structures motivates organic and medicinal chemists to explore the structure–activity relationship, and then, to find novel structural features with anti-oxidative properties. Therefore, it is reasonable to believe that China researchers will donate more endeavors to obtain more achievements on anti-oxidants in the future.
Pirarubicin (THP) is an anthracycline antibiotic, frequently used for the treatment of various human cancers. Unfortunately, the clinical effectiveness of THP is limited by its dose-related cardiotoxicity. Apocynum leaf extract is an extract of the dried leaves of Apocynum venetum L. (a member of the Apocynaceae family, AVLE) that has many positive effects on the cardiovascular system and is widely consumed as tea in China. In this study we established a cardiactoxicity rat model, which showed that pretreatment with AVLE attenuated THP-induced myocardial histopathological injury, electrocardiogram abnormalities, and cardiac dysfunction. AVLE also significantly reduced serum levels of malondialdehyde (MDA), brain natriuretic peptide (BNP), creatine kinase (CK-MB), cardiac troponin (CTnT), and lactate dehydrogenase (LDH); and increased serum superoxide dismutase (SOD) levels. Treatment with AVLE or dexrazoxane (DZR) resulted in an increase Cytochrome C (cytc) in the mitochondria and reduced Cytc and cleaved-caspase-3 levels (p<0.05p<0.05) in cytoplasm. We also found that AVLE significantly reduced voltage-dependent anion channel 1 (VDAC1), adenosine nucleotide transporter 1 (ANT1), and cyclophilin D (CYPD) mRNA expression (p<0.05p<0.05). Furthermore, AVLE appeared to exert therapeutic effects in a dose-dependent manner. Our study suggests the anti-oxidant and anti-apoptotic properties of AVLE may be responsible for the observed cardioprotective effects.
Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disorder associated with features of metabolic syndrome and oxidative stress. We examined the mechanism by which the combined extracts of Rhus verniciflua and Eucommia ulmoides extracts (ILF-RE) regulate hepatic dyslipidemia in an established NAFLD model, high-fat diet (HFD)-induced lipid dysmetabolism in rats. ILF-RE attenuated alanine aminotransferase (ALT) by 1.5% (p<0.05)(p<0.05), aspartate aminotransferase (AST) by 1.5% (p<0.05)(p<0.05), triglycerides by 1.5% (p<0.05)(p<0.05), cholesterol by 2.0% (p<0.05)(p<0.05), and lipid peroxidation by 1.5% (p<0.05)(p<0.05) in the NAFLD model. ILF-RE, recently shown to have anti-oxidant properties, also inhibited hepatic ROS accumulation by 1.68% (p<0.05)(p<0.05) and regulated ER-redox imbalance, a key phenomenon of ER stress. Due to nutrient overload stress-associated protein folding, ER stress and downstream SREBP-lipogenic transcription signaling were highly activated, and the mTORC1-AMPK axis was also disturbed, leading to hepatic steatosis. ILF-RE results in recovery from hepatic conditions induced by nutrient-based protein folding stress signaling and the ER stress-SREBP and AMPK-mTORC1-SREBP1 axes. Based on these results, ILF-RE is suggested to be a potential therapeutic strategy for hepatic steatosis and may represent a promising novel agent for the prevention and treatment of NAFLD.
Skin is the outer tissue layer and is a barrier protecting the body from various external stresses. The fresh water green edible algae Prasiola japonica has antiviral, antimicrobial, and anti-inflammatory properties; however, few studies of its effects on skin-protection have been reported. In this study, Prasiola japonica ethanol extract (Pj-EE) was prepared, and its skin-protective properties were investigated in skin keratinocytes. Pj-EE inhibited ROS production in UVB-irradiated HaCaT cells without cytotoxicity. Pj-EE also suppressed the apoptotic death of UVB-irradiated HaCaT cells by decreasing the generation of apoptotic bodies and the proteolytic activation of apoptosis caspase-3, -8, and -9. Moreover, Pj-EE downregulated the mRNA expression of the inflammatory gene cyclooxygenase-2 (COX-2), the pro-inflammatory cytokine genes interleukin (IL)-1ββ, IL-8, IL-6, tumor necrosis factor (TNF)-αα, and interferon (IFN)-γγ, and the tissue remodeling genes matrix metalloproteinase (MMP)-1, -2, -3, and -9. The Pj-EE-induced anti-inflammatory effect was mediated by suppressing the activation of nuclear factor-kappa B (NF-κκB) signaling pathway in the UVB-irradiated HaCaT cells. Taken together, these results suggest that Pj-EE exerts skin-protective effects through anti-oxidant, anti-apoptotic, and anti-inflammatory activities in skin keratinocytes.
Flacourtiaceae plants are widely used as folk medicines in traditional medicine systems for its chemical diversity and pharmacological activities. In many different areas, Flacourtiaceae plants are used as traditional medicines for the treatment of ulcers, malaria, rheumatism. The Flacourtiaceae plants contain a very plentiful chemical composition, and phytochemical studies show that the Flacourtiaceae plants contained terpenoids, aromatic glycosides, flavnoids, phenylpropanoids, alkaloids, fatty hydrocarbon, and other compounds. In pharmacological studies, various extract and isolated individual compounds exhibited antitumor, anti-oxidation, and anti-inflammatory activities. In this review, the literature data on the chemical constituents and pharmacological investigations of the Flacourtiaceae plants are summarized, to provide information about a more comprehensive chemical composition and detailed pharmacological activities of Flacourtiaceae plants, with a view of further development of clinical medication. However, research on quantitative analysis, toxicity, and drug safety in vitro and in vivo is still insufficient, and further research is required.
Hepatic ischemia-reperfusion (IR) injury remains the major cause of liver damage post-liver surgery or transplantation. Diminishing oxidative stress and inflammatory responses is a powerful channel to reduce the rate of morbidity and mortality. Gastrodin (GSTD), a bioactive compound extracted from the traditional Chinese herbal agent with a long history of clinical application in nervous system diseases, is suggested to possess anti-oxidative effects on liver diseases, such as nonalcoholic fatty liver disease. However, the therapeutic potential of GSTD in liver IR injury remains unclear. In this paper, we performed surgery to set up the 70% hepatic IR injury models in mice after a three-day pretreatment of GSTD. We found the administration of GSTD reduced liver damage, which correlated with lower histological Suzuki’s score, lower serum alanine transaminase (AST) and alanine transaminase (ALT) levels, less oxidative stress, and cell apoptosis in a dose-responsive manner, as compared to the parallel control. Meanwhile, we observed a great induction of heme oxygenase-1 (HO-1) and an activation of the p38 mitogen-activated protein kinases/nuclear factor erythroid 2-related factor 2 (p38MAPK/Nrf2) pathway in response to the GSTD pretreatment, while the protective effects upon GSTD diminished in mice with HO-1 heterozygous mutation. In addition, GSTD inhibited IR induced toll-like receptor (TLR) 4, but not TLR2 in a HO-1 dependent manner, leading to a down-regulation of cytokines, such as interleukin (IL)-6 and TNF-αα. Collectively, our findings revealed GSTD attenuated liver IR injury via activation of the HO-1 pathway, providing a novel therapeutic strategy to minimize the IR induced oxidative stress in the process of liver transplantation.
Fucoidan is a type of polysaccharide rich in sulfuric acid groups and is mainly found in brown algae. Due to its extensive biological activities, such as anticoagulant, antitumor, antithrombotic, antiviral, anti-oxidant and enhancing immune function, fucoidan has gradually become a research hotspot. Under the scientific guidance of modern medical theory, fucoidan and its mechanism in oxidative stress, carbohydrate and lipid metabolism, inflammatory response, tumor proliferation, and metastasis have become a new research direction and an important basis as an effective liver protection drug. In this paper, we discuss the important role of fucoidan in viral hepatitis, liver fibrosis, liver cancer, nonalcoholic fatty liver and liver injury induced by drugs and ischemia and briefly discuss its underlying mechanism. We supplement the theoretical basis for its clinical application and provide effective targets for the development of follow-up dominant drugs.
Alcoholic liver damage is caused by ethanol and its oxidized intermediates, and endotoxin-induced acute liver failure is mediated by apoptosis and inflammation. We investigated whether extracts of sprouts of Panax ginseng (SG) attenuate alcohol or endotoxin-induced acute liver injury in mice. Whole SG contains eight times more ginsenosides than the root and, because it grows quickly (∼∼30 days) without using pesticides, the whole-plant can be harvested. The extracts were enriched in phenolics and flavonoids and showed high radical scavenging activities. Mice received oral administration of SG or fermented SG (FSG) extracts 1 h before an injection of either ethanol or lipopolysaccharide and D-galactosamine (LPS/GalN). The latency of righting reflex was monitored to examine the effect of extracts on relieving hangover symptoms. The results indicate that FSG significantly reduced the latency of righting reflex, SG and FSG increased the activity and expression of ethanol-metabolizing enzymes, and FSG decreased hepatic necrosis and plasma levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST). During the ethanol metabolism, cytochrome P450 2E1 expression was increased, but 4-hydroxynonenal levels were decreased by the extracts due to their anti-oxidant activity. LPS/GalN-induced liver injury was reduced by SG and FSG; plasma ALT and AST levels, hepatic necrosis, and apoptotic and inflammatory markers were all decreased. In conclusion, SG extracts attenuated ethanol-induced hangover and endotoxin-induced acute liver injury, and fermentation enhanced the efficacy with regard to relieving hangover.
Inflammatory macrophages stimulated by LPS disrupt homeostasis in the production of inflammatory cytokines and nitric oxide (NO). These are the causes of inflammation-related diseases and various cancers. The present study aimed to evaluate the protective effects of Korean ginseng berry extract (KGB) on lipopolysaccharide (LPS)-induced inflammation in RAW264.7 macrophage cells. NO and prostaglandin E2 (PGE2)2) production was elevated in response to LPS stimulation and was dose-dependently reduced by pretreatment with KGB. The expression levels of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) mRNA and protein were also reduced by KGB treatment. KGB treatment significantly suppressed the LPS-induced gene expression and production of cytokines, including interleukin (IL)-1ββ, IL-6, and tumor necrosis factor-αα (TNF-α)α). Furthermore, KGB inhibited the translocation of nuclear expression of nuclear factor-kappa B (NF-κκB) by preventing inhibitory factor-kappa B (IκκBα)α) phosphorylation and suppressing the phosphorylation of extracellular signal-related kinase (ERK1/2), c-Jun N-terminal kinase (JNK), and p38. Additionally, decreased reactive oxygen species (ROS) generation and increased glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and catalase (CAT) activities were observed following KGB treatment. Taken together, these results indicated that KGB possesses anti-inflammatory and anti-oxidant effects, mediated by the inhibition of the mitogen-activated protein kinases (MAPKs) signaling pathway in LPS-induced RAW264.7 macrophages. KGB may represent a potential therapeutic agent for inflammatory and oxidative stress-related diseases.
Cornuside (CNS), found in the fruit of Cornus officinalis Seib, is a natural bisiridoid glucoside that possesses therapeutic effects by suppressing inflammation. This study aimed to determine whether CNS could inhibit the inflammatory response induced by lipopolysaccharide (LPS) in human umbilical vein endothelial cells (HUVECs) and mice, as well as to decipher the mechanisms. After activating HUVECs with LPS, the cells were treated with CNS. Cells were then isolated for protein or mRNA assays to analyze signaling and inflammatory molecules. In addition, mice received an intraperitoneal injection of LPS, followed by an intravenously administered dose of CNS. CNS inhibited cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS) expressions induced by LPS. CNS decreased phosphorylated signal transducer and activator of transcription 1 (STAT1)-1 by promoting HO-1 expression, inhibiting nuclear factor (NF)-κκB-luciferase activity, and decreasing COX-2/prostaglandin E2 (PGE2) and iNOS/NO. Furthermore, CNS treatment in LPS-activated HUVECs increased the nuclear translocation of nuclear factor erythrocyte 2-related factor 2 (Nrf2) and combined Nrf2 to anti-oxidant response elements and decreased IL-1ββ production. Reduced iNOS/NO expression by CNS was restored when HO-1 RNAi inhibited heme oxygenase-1 (HO-1). After CNS treatment in vivo, iNOS levels in lung tissue and tumor necrosis factor (TNF)-αα expression in the bronchoalveolar lavage fluid were significantly decreased. The results indicated that CNS increased HO-1 expression, reduced LPS-activated NF-κκB–luciferase activity, and inhibited iNOS/NO and COX-2/PGE2, all of which contributed to the inhibition of STAT-1 phosphorylation. Thus, CNS can be a potential new substance for treating inflammatory disorders.
Pulmonary fibrosis (PF) is a progressive pulmonary disease with no effective treatment and high mortality. Resveratrol has shown promising benefits in the treatment of PF. However, the probable efficacy and underlying mechanism of resveratrol in PF treatment remain unclear. This study investigates the intervention effects and potential mechanisms underpinning the treatment of PF with resveratrol. The histopathological analysis of lung tissues in PF rats showed that resveratrol improved collagen deposition and reduced inflammation. Resveratrol decreased the levels of collagen, glutathione, superoxide dismutase, myeloperoxidase, and hydroxyproline, lowered total anti-oxidant capacity, and suppressed the migration of TGF-ββ1 and LPS-induced 3T6 fibroblasts. With resveratrol intervention, the protein and RNA expressions of TGF-ββ1, a-SMA, Smad3/4, p-Smad3/4, CTGF, and p-ERK1/2 were markedly downregulated. Similarly, the protein and RNA expression levels of Col-1 and Col-3 were significantly downregulated. However, Smad7 and ERK1/2 were evidently upregulated. The protein and mRNA expression levels of TGF-ββ, Smad, and p-ERK correlated positively with the lung index, while the protein and mRNA expression levels of ERK correlated negatively with the lung index. These results reveal that resveratrol may have therapeutic effects on PF by reducing collagen deposition, oxidation, and inflammation. The mechanism is associated with the regulation of the TGF-ββ/Smad/ERK signaling pathway.
The articles is about how pomegranate is a most potent protector against cardiovascular diseases.
Type 1 diabetes mellitus, is one of the severe chronic metabolic diseases with severe worldwide complications due to increased levels of glucose affecting many organ functionalities. Antioxidant properties reduce the free radicals and inhibit the oxidation that promotes cellular development in many conditions such as diabetes, Alzheimer’s disease and cardiovascular disorders. Phthalocyanine is a large blue colored aromatic compound with high potential of anti-oxidant ability owing to the presence of porphyrazine ring units. The present study has aimed at examining the potential effect of phthalocyanine on the streptozotocin-induced diabetic model over 28 days. For the study, the animals were assigned into 4 groups: control, diabetic, phthalocyanine (10 μμg/kg/day) treated diabetic group and phthalocyanine (20 μμg/kg/day) treated diabetic group. After the induction of diabetes using streptozotocin (53 mg/kg body weight), phthalocyanine (10 μμg/kg/day) and phthalocyanine (20 μμg/kg/day) were given daily for 28 days and the blood glucose level was checked on 7th, 14th, 21st and 28th day. A significant reduction in blood glucose within the period on the 28th day with increase in body weight was observed. Phthalocyanine also showed a decrease in the total protein content and blood urea nitrogen with improved oxidative stress parameters. The histopathological analyses displayed improvement in pancreatic structure with basal rounded nuclei and well-defined boundaries normal acini with a phthalocyanine dose (10 μμg/kg). It was concluded that phthalocyanine at the dose of 10 μμg/kg presented anti-diabetic and anti-hyperlipidemic actions with protective effect to the pancreatic ββ-cell within 28 days.
Please login to be able to save your searches and receive alerts for new content matching your search criteria.