World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A Decision Model for Berth Allocation Under Uncertainty Considering Service Level Using an Adaptive Differential Evolution Algorithm

    https://doi.org/10.1142/S0217595916500494Cited by:19 (Source: Crossref)

    This paper focuses on the berth allocation problem, which is to determine where and when the vessels to be loaded and unloaded at a terminal within a given planning horizon, with consideration of uncertain factors, mainly including the arrival and operation time of the calling vessels. Based on the concept of service level which is commonly used in the inventory system, a decision model is constructed to minimize the cost of baseline schedule, which includes delay cost and nonoptimal berthing location cost. According to the specific characteristics of the model, the upper and lower bounds are found. And due to the NP-hardness of the constructed model, an adaptive differential evolution is employed to solve the problem. Finally, extensive numerical experiments are conducted to test the performance of the proposed models and solution approaches.